12£®Ä³Ñ§Ð£Ò»Ë®Ëþʢˮ4m3£¬Ã¿Ð¡Ê±·ÅË®0.5m3£¬Ë®ËþÖÐʣˮÁ¿y£¨m3£©Óë·Åˮʱ¼äx£¨h£©µÄ¹ØÏµÈçͼËùʾ£®
£¨1£©ÇóyÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£®
£¨2£©Èô·ÅË®6h£¬Ë®ËþÖл¹ÓжàÉÙË®£¿

·ÖÎö £¨1£©¸ù¾ÝͼÏóµÃ³öÐÅÏ¢£¬ÔÙÀûÓôý¶¨ÏµÊý·¨½â³ö½âÎöʽ¼´¿É£»
£¨2£©°Ñx=6´úÈë½âÎöʽ½â´ð¼´¿É£®

½â´ð ½â£º£¨1£©Éè½âÎöʽΪ£ºy=kx+b£¬
°Ñ£¨0£¬4£©ºÍ£¨8£¬0£©´úÈë¿ÉµÃ£º$\left\{\begin{array}{l}{b=4}\\{8k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-0.5}\\{b=4}\end{array}\right.$£®
ËùÒÔ½âÎöʽΪ£ºy=-0.5x+4£»
£¨2£©°Ñx=6´úÈë½âÎöʽ¿ÉµÃ£ºy=-0.5¡Á6+4=1£®
´ð£ºË®ËþÖл¹ÓÐ1m3Ë®£®

µãÆÀ ´ËÌ⿼²éÒ»´Îº¯ÊýµÄÓ¦Ó㬹ؼüÊǸù¾ÝͼÏóµÃ³öÐÅÏ¢£¬ÔÙÀûÓôý¶¨ÏµÊý·¨½â³ö½âÎöʽ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®º¯Êýy=2xÓëy=$\frac{18}{x}$µÄͼÏó½»ÓÚA¡¢BÁ½µã£¨ÆäÖÐAÔÚµÚÒ»ÏóÏÞ£©£¬¹ýA×÷AC¡ÍxÖáÓÚC£¬Ôò¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®6B£®9C£®12D£®18

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¹ØÓÚxµÄ·½³Ìx2-mx-m-1=0¢ÙÓÐÁ½¸öʵ¸ùx1ºÍx2£¬¹ØÓÚyµÄ·½³Ìy2-2£¨n-1£©y+n2-2n=0¢ÚÓÐÁ½¸öʵ¸ùy1ºÍy2£¬ÇÒ-2¡Üy1£¼y2¡Ü4£¬µ±x1+x2+2£¨2y1-y2£©+14=0ʱ£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬EΪCDµÄÖе㣬FÊÇDAµÄÖе㣬Á¬½ÓBE£¬ÓëCFÏཻÓÚP£¬ÇóÖ¤£ºAP=AB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®µ±·½³Ìax2+bx+c=0ÓÐÁ½ÏàÒìʵ¸ùʱÂú×ãµÄÌõ¼þb2-4ac£¾0ÇÒa¡Ù0£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÒ»¸ö¹ØÓÚxµÄÒ»´ÎʽMÓë2x-1Ïà³Ë£¬»ýÊǹØÓÚxµÄ¶þ´Îʽ2x2-4x+b£¬ÇóÒ»´ÎʽMºÍ³£ÊýbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®½â·½³Ì×飺$\left\{\begin{array}{l}{\frac{x+1}{3}=\frac{5x-y}{5}}\\{7y=5x+25}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÒ»¸ö¶à±ßÐΣ¬³ýÁËÒ»¸öÄÚ½ÇÍ⣬ÆäÓà¸÷ÄڽǺÍÊÇ2400¶È£¬ÇóÕâ¸öÄڽǵĶÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁеÈʽһ¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®$\frac{n}{m}$=$\frac{{n}^{2}}{{m}^{2}}$B£®$\frac{n}{m}$=$\frac{n-1}{m-1}$C£®$\frac{n}{m}$=$\frac{n+1}{m+1}$D£®$\frac{n}{m}$=$\frac{na}{ma}$£¨a¡Ù0£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸