【题目】如图,二次函数的图象与轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,顶点为P,直线与过点B且垂直于轴的直线交于点D,且CP:PD=1:2,tan∠PDB=.
(1)请直接写出A、B两点的坐标:A , B ;
(2)求这个二次函数的解析式;
(3)在抛物线的对称轴上找一点M使|MC-MB|的值最大,则点M的坐标为____.
【答案】(1)B(3,0),A(-1,0);(2)y=;(3)(1,-).
【解析】
(1)先求得抛物线的对称轴为x=1,然后利用平行线分线段成比例定理求得OE:EB的值,从而得到点B的坐标,利用抛物线的对称性可求得点A的坐标;
(2)过点C作CF⊥PE,垂足为F.先求得点C和点P的坐标(用含字母的式子表示),然后可得到PF=a,然后利用锐角三角函数的定义可求得a的值,然后将点A和点B的坐标代入抛物线的解析式可求得c的值;
(3)根据三角形的任意两边之差小于第三边判断出点A、C、M在同一直线上时|MC-MB|最大,设直线AC的解析式为y=kx+b,利用待定系数法求出一次函数解析式,再根据点M在对称轴上代入计算即可得解.
解:(1)如图所示:
∵由题意可知:抛物线的对称轴为x=1,
∴OE=1.
∵OC∥PE∥BD,CP:PD=1:2,
∴ .
∴BE=2.
∴OB=3.
∴B(3,0).
∵点A与点B关于PE对称,
∴点A的坐标为(-1,0).
故答案是:-1,0;3,0;
(2)过点C作CF⊥PE,垂足为F.
将x=0代入得:y=c,
∴点C的坐标为(0,c).
将x=1代入得y=-a+c.
∴点P的坐标为(1,-a+c).
∴PF=a.
∵PE∥BD,tan∠PDB=,
∴tan∠CPF=tan∠PDB=.
∴ .
解得a=.
将a=代入抛物线的解析式得:y=x2-x+c.
将点A的坐标代入得:+c=0,解得:c=-.
∴抛物线的解析式为y=.
(3)由三角形的三边关系,|MC-MB|<AC,
∴当点A、C、M在同一直线上时|MC-MB|最大,
设直线AC的解析式为y=kx+b,
则 ,
解得,
∴y=-x-,
∵抛物线对称轴为直线x=1,
∴当x=1时,y=-×1-=-,
∴点M的坐标为(1,-).
故答案是:(1,-).
科目:初中数学 来源: 题型:
【题目】如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA交以A为圆心AB长为半径的圆弧于点E,延长BA交以A为圆心AC长为半径的圆弧于点F,直线EF分别交x轴、y轴于点M、N,当NF=4EM时,图中阴影部分的面积等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料,完成(1)-(3)题.
数学课上,老师出示了这样一道题:
如图1,在△ABC中,BA=BC,.点F在AC上,点E在BF上,.点D在BC 延长线上,连接AD、AE,∠ACD+∠DAE=180゜.探究线段AD与AE的数量关系并证明.
同学们经过思考后,交流了自已的想法:
小明:“通过观察和度量,发现∠CAD与∠EAB相等.”
小亮:“通过观察和度量,发现∠FAE与∠D也相等.”
小伟:“通过边角关系构造辅助线,经过进一步推理,可以得到线段AD与AE的数量关系.”
老师:“保留原题条件,延长图1中的AE,与BC相交于点H(如图2),若知道DH与AH的数量关系,可以求出的值.”
(1)求证:∠CAD=∠EAB;
(2)求的值(用含k的式子表示);
(3)如图2,若,则的值为________(用含k的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;
(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示抛物线过点,点,且
(1)求抛物线的解析式及其对称轴;
(2)点在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;
(3)点为抛物线上一点,连接,直线把四边形的面积分为3∶5两部分,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人,在扇形统计图中“D”对应的圆心角的度数为 ;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=4,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“世界读书日”前夕,某校开展了“读书助我成长”的阅读活动.为了了解该校学生在此次活动中课外阅读书籍的数量情况,随机抽取了部分学生进行调查,将收集到的数据进行整理,绘制出两幅不完整的统计图,请根据统计图信息解决下列问题:
(1)求本次调查中共抽取的学生人数;
(2)补全条形统计图;
(3)在扇形统计图中,阅读本书籍的人数所在扇形的圆心角度数是 ;
(4)若该校有名学生,估计该校在这次活动中阅读书籍的数量不低于本的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有两个不相等的实数根,求k的取值范围;
(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com