精英家教网 > 初中数学 > 题目详情

【题目】某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

1)这次被调查的学生共有   人,在扇形统计图中“D”对应的圆心角的度数为   

2)请你将条形统计图补充完整;

3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

【答案】120072°;(2)详见解析;(3

【解析】

1)利用扇形统计图得到A类的百分比为10%,则用A类的频数除以10%可得到样本容量;然后用B类的百分比乘以360°得到在扇形统计图中“D”对应的圆心角的度数;

2)先计算出C类的频数,然后补全统计图;、

3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解.

解:(120÷200

所以这次被调查的学生共有200人,

在扇形统计图中“D”对应的圆心角的度数=×360°=72°;

故答案为20072°;

2C类人数为20080204060(人),

完整条形统计图为:

3)画树状图如下:

由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.

所以P(恰好选中甲、乙两位同学)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数轴于点,交轴于点,在轴上有一点,连接.

(1)求二次函数的表达式;

(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;

(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为缓解扬州城区交通压力,城市南部快速通道已于4.18开工建设.某工程队承担了某道路900米长的改造任务.工程队在改造完360米道路后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造道路多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,FBD上,BE=DF,

(1)求证:AE=CF;

(2)若AB=3,AOD=120°,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴的负半轴和正半轴分别交于AB两点,与y轴交于点C,顶点为P,直线与过点B且垂直于轴的直线交于点DCPPD=12tanPDB=

1)请直接写出AB两点的坐标:A B

2)求这个二次函数的解析式;
3)在抛物线的对称轴上找一点M使|MC-MB|的值最大,则点M的坐标为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:抛物线yax+1)(x3)交x轴于AC两点,交y轴于B.且OB2CO

1)求点ABC的坐标及二次函数解析式;

2)在直线AB上方的抛物线上有动点E,作EGx轴交x轴于点G,交AB于点M,作EFAB于点F.若点M的横坐标为m,求线段EF的最大值.

3)抛物线对称轴上是否存在点P使得ABP为直角三角形,若存在请直接写出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将矩形纸片OABC放在平面直角坐标系中,0为坐标原点,点A在y轴上,点C在x轴上,点B的坐标是(8,6),点P是边AB上的一个动点,将△OAP沿OP折叠,使点A落在点Q处.

(1)如图①,当点Q恰好落在OB上时.求点p的坐标;

(2)如图②,当点P是AB中点时,直线OQ交BC于M点.

①求证:MB=MQ;②求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线C1x轴的正半轴交于点A,点B为抛物线的顶点,直线l是一条动直线.

(1)求点A、点B的坐标;

(2)当直线l经过点A时,求出直线l的解析式,并直接写出此时当时,自变量x的取值范围;

(3)如图2,将抛物线C1x轴上方的部分沿x轴翻折,与C1x轴下方的图形组合成一个新的图形C2,当直线l与组合图形C2有且只有两个交点时,直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ADBC边上的中线,EAB边上一点,过点CCFABED的延长线于点F

1)求证:△BDE≌△CDF

2)当ADBCAE2CF4时,求AC的长.

查看答案和解析>>

同步练习册答案