【题目】甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同线路行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是_________.
【答案】①②③
【解析】
①根据图可知乙车两小时追上甲车,列式计算即可;
②根据速度差和行驶时间计算;
③求出A,B两地之间的距离,然后减去甲行驶的距离就是H点的纵坐标;
④由③可知H的坐标是(7,80),此时两车相距80km,然后求出相遇需要的时间,即可得到n的值.
解:设甲、乙两车的速度分别为V甲,V乙,
①(V乙-V甲)×2=80,∴V乙-V甲=40km/h,∴乙车的速度是120km/h,故正确;
②40×(6-2)=160km,∴m=160,故正确;
③根据图可知,乙6小时到达B地,∴A,B两地相距120×6=720km,乙车先到达B地并停留1h后,甲车行走了80×(1+6+1)=640km,720-640=80km,∴点H的坐标是(7,80),故正确;
④点H的坐标是(7,80),此时辆车相距80km,∴80÷(120+80)=0.4,
∴n=7+0.4=7.4,故错误;
∴其中说法正确的是:①②③,
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】主题班会课上,王老师出示了如图一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
观点 | 频数 | 频率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)参加本次讨论的学生共有 人;
(2)表中a= ,b= ;
(3)将条形统计图补充完整;
(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为( )
A.﹣12B.﹣10C.﹣9D.﹣6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n>0且n为整数),与y轴交于C点.
(1)若a=1,①求二次函数关系式;②求△ABC的面积;
(2)求证:a=m-;
(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,AD是⊙O的弦,AO平分.过点B作⊙O的切线交AO的延长线于点C,连接CD,BO.延长BO交⊙O于点E,交AD于点F,连接AE,DE.
(1)求证:是⊙O的切线;
(2)若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4)
【1】当时,求弦PA、PB的长度;
【2】当x为何值时,PD×CD的值最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足为点G,GD的延长线交EF于点H,已知BD=24,则GH=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数图象的顶点为(﹣1,1),且与反比例函数的图象交于点A(﹣3,﹣3)
(1)求二次函数与反比例函数的解析式;
(2)判断原点(0,0)是否在二次函数的图象上,并说明理由;
(3)根据图象直接写出二次函数的值小于反比例函数的值时自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com