精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点(06),其对称轴为直线x=.在x轴上方作平行于x轴的直线l与抛物线交于AB两点(点A在对称轴的右侧),过点ABx轴的垂线,垂足分别为DC.设A点的横坐标为m

1)求此抛物线所对应的函数关系式.

2)当m为何值时,矩形ABCD为正方形.

3)当m为何值时,矩形ABCD的周长最大,并求出这个最大值.

【答案】1y=-x2+3x+6;(2;(3)当时,矩形ABCD的周长最大为

【解析】

1)首先根据对称轴求得b值,然后代入点(06)求得c值即可;
2)首先用含m的代数式表示出线段ABAD的长,然后利用正方形ABCDAB=CD得到有关m的等式求得m的值即可;
3)表示出正方形的周长,然后利用配方法求最值即可;

1对称轴为直线x=

b=3

把(06)代入y=-x2+3x+c得,

6=-0+3×0+c

解得c=6

此抛物线所对应的函数关系式为y=-x2+3x+6

2)根据题意,得

AD=-m2+3m+6

矩形ABCD为正方形,AB=AD

2m-3=-m2+3m+6

解得

A在对称轴的右侧,

(舍去).

3)设矩形ABCD的周长为C

时,矩形ABCD的周长最大为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一个公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y(米)与小懿离开小区的时间x(分钟)之间的函数图象,则小区到公园的距离为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点和点在抛物线上.

(Ⅰ)求该抛物线的解析式和顶点坐标,并求出的值;

(Ⅱ)求点关于轴对称点的坐标,并在轴上找一点,使得最短,求此时点的坐标;

(Ⅲ)平移抛物线,记平移后点的对应点为,点的对应点为,点轴上的定点.

①当抛物线向左平移到某个位置时,最短,求此时抛物线的解析式;

轴上的定点,当抛物线向左平移到某个位置时,四边形的周长最短,求此时抛物线的解析式(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,D是边BC的中点,EAB边上一点,且ADCEOADACCE

1)求证:∠B45°

2)求的值;

3)直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,如图是张磊家20182月和3月所交电费的收据.

1)该市规定的第一阶梯电价和第二阶梯电价单价分别为多少?

2)张磊家4月份家庭支出计划中电费为160元,他家最大用电量为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB = 90°,点DE分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=ACBAC=90°,直角∠EPF的顶点PBC中点,两边PEPF分别交ABAC于点EF,给出以下五个结论:①PFA≌△PEBEF=APPEF是等腰直角三角形,④当∠EPFABC内绕顶点P旋转时(点E不与AB重合)S四边形AEPF=SABC,上述结论中始终正确有 (  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数x0)的图象交于点B(﹣2,n),过点BBCx轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.

(1)求m的值;

(2)若DBC=∠ABC,求一次函数y=kx+b的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】台州人民翘首以盼的乐清湾大桥于2018928日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数.

1)求大桥上车流密度为50/辆千米时的车流速度;

2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?

3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值.

查看答案和解析>>

同步练习册答案