【题目】如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点(0,6),其对称轴为直线x=.在x轴上方作平行于x轴的直线l与抛物线交于A、B两点(点A在对称轴的右侧),过点A、B作x轴的垂线,垂足分别为D、C.设A点的横坐标为m.
(1)求此抛物线所对应的函数关系式.
(2)当m为何值时,矩形ABCD为正方形.
(3)当m为何值时,矩形ABCD的周长最大,并求出这个最大值.
【答案】(1)y=-x2+3x+6;(2);(3)当时,矩形ABCD的周长最大为.
【解析】
(1)首先根据对称轴求得b值,然后代入点(0,6)求得c值即可;
(2)首先用含m的代数式表示出线段AB、AD的长,然后利用正方形ABCD的AB=CD得到有关m的等式求得m的值即可;
(3)表示出正方形的周长,然后利用配方法求最值即可;
(1)∵对称轴为直线x=,
∴,
∴b=3.
把(0,6)代入y=-x2+3x+c得,
6=-0+3×0+c,
解得c=6.
∴此抛物线所对应的函数关系式为y=-x2+3x+6.
(2)根据题意,得
AD=-m2+3m+6.
∵矩形ABCD为正方形,AB=AD.
∴2m-3=-m2+3m+6,
解得.
∵点A在对称轴的右侧,
∴.
∴(舍去).
∴.
(3)设矩形ABCD的周长为C.
.
∴当时,矩形ABCD的周长最大为.
科目:初中数学 来源: 题型:
【题目】春天的某个周末,阳光明媚,适合户外运动.下午,住在同一小区的小懿、小静两人不约而同的都准备从小区出发,沿相同的路线步行去同一个公园赏花!小懿出发5分钟后小静才出发,同时小懿发现当天的光线很适合摄影,所以决定按原速回家拿相机,小懿拿了相机后,担心错过最佳拍照时间,所以速度提高了20%,结果还是比小静晚2分钟到公园.小懿取相机的时间忽略不计,在整个过程中,小静保持匀速运动,小懿提速前后也分别保持匀速运动.如图所示是小懿、小静之间的距离y(米)与小懿离开小区的时间x(分钟)之间的函数图象,则小区到公园的距离为_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点和点在抛物线上.
(Ⅰ)求该抛物线的解析式和顶点坐标,并求出的值;
(Ⅱ)求点关于轴对称点的坐标,并在轴上找一点,使得最短,求此时点的坐标;
(Ⅲ)平移抛物线,记平移后点的对应点为,点的对应点为,点是轴上的定点.
①当抛物线向左平移到某个位置时,最短,求此时抛物线的解析式;
②是轴上的定点,当抛物线向左平移到某个位置时,四边形的周长最短,求此时抛物线的解析式(直接写出结果即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是边BC的中点,E是AB边上一点,且AD⊥CE于O,AD=AC=CE.
(1)求证:∠B=45°;
(2)求的值;
(3)直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费,如图是张磊家2018年2月和3月所交电费的收据.
(1)该市规定的第一阶梯电价和第二阶梯电价单价分别为多少?
(2)张磊家4月份家庭支出计划中电费为160元,他家最大用电量为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB = 90°,,点D、E分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),S四边形AEPF=S△ABC,上述结论中始终正确有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】台州人民翘首以盼的乐清湾大桥于2018年9月28日正式通车,经统计分析,大桥上的车流速度(千米/小时)是车流密度(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究证明:当时,车流速度是车流密度的一次函数.
(1)求大桥上车流密度为50/辆千米时的车流速度;
(2)在某一交通高峰时段,为使大桥上的车流速度大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?
(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量车流速度车流密度,求大桥上车流量的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com