精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,则图中全等三角形的对数是(

A.1对
B.2对
C.3对
D.4对

【答案】D
【解析】解:∵EF是AC的垂直平分线,
∴OA=OC,
又∵OE=OD,
∴Rt△AOE≌Rt△COE,
∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴△ABC关于直线AD轴对称,
∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,
综上所述,全等三角形共有4对.
故选D.
根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.

(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;

(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?

(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列长度的三条线段中,能组成三角形的是( )

A.3cm5cm8cm B.8cm8cm18cmC.1cm 1cm1cmD.3cm4cm8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a+b=5ab=4,则a2ab+b2=(  )

A.29B.37C.21D.33

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,分别以点A,C为圆心,大于 AC长为半径画弧,两弧相交于点M,N,作直线MN,与AC,BC分别交于点D,E,连接AE.

(1)求∠ADE的度数(直接写出结果);
(2)当AB=3,BC=4时,求△ABE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(0,m)在y轴的正半轴上,则点M(﹣m,﹣m﹣1)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取了一部分同学就“我最喜爱的体育项目”进行了一次调查(每位同学必选且只选一项).下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:

(1)小龙一共抽取了   名学生.

(2)补全条形统计图;

(3)求“其他”部分对应的扇形圆心角的度数.

查看答案和解析>>

同步练习册答案