分析 在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在Rt△BCE中,根据射影定理求得GF的长,即可求得OF的长.
解答
解:如图,在BE上截取BG=CF,连接OG,
∵Rt△BCE中,CF⊥BE,
∴∠EBC=∠ECF,
∵∠OBC=∠OCD=45°,
∴∠OBG=∠OCF,
在△OBG与△OCF中,
$\left\{\begin{array}{l}{OB=OC}\\{∠OBG=∠OCF}\\{BG=CF}\end{array}\right.$,
∴△OBG≌△OCF(SAS),
∴OG=OF,∠BOG=∠COF,
∴OG⊥OF,
在RT△BCE中,BC=DC=2$\sqrt{5}$,DE=EC=$\sqrt{5}$,
∴BE=$\sqrt{B{C}^{2}+C{E}^{2}}$=5,
∵BC2=BF•BE,
则(2$\sqrt{5}$)2=BF•5,解得:BF=4,
∴EF=BE-BF=5-4=1,
∵CF2=BF•EF=4,
∴CF=2,
∴GF=BF-BG=BF-CF=4-2=2,
在等腰直角△OGF中
OF2=$\frac{1}{2}$GF2,
∴OF=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 此题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形的性质,以及正方形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 19 | B. | 20 | C. | 24 | D. | 25 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com