【题目】如图,在正方形ABCD中,点E是BC边上一点,连接AE,将△ABE绕点E顺时针旋转得到△A1B1E,点B1在正方形ABCD内,连接AA1、BB1;
(1)求证:△AA1E∽△BB1E;
(2)延长BB1分别交线段AA1,DC于点F、G,求证:AF=A1F;
(3)在(2)的条件下,若AB=4,BE=1,G是DC的中点,求AF的长.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)由EB=EB1,EA=EA1,可得∠EBB1=∠EB1B,∠EAA1=∠EA1A,由∠BEB1=∠AEA1,可得∠EBB1=∠EB1B=∠EAA1=∠EA1A,根据运用∽三角形的判定定理即可证明;
(2)连接BF,延长EB1交AA1于M.先证△MFB1∽△MEA1,再证△MEF∽△MA1B1,可得∠MFE=∠MB1A1=90°,即EF⊥AA1,由EA=EA1,可得AF=FA1;
(3)先求出AE,再由cos∠GBC=cos∠EAF===,在Rt△AEF中,根据AF=AEcos∠EAF,计算即可;
(1)证明:如图
∵EB=EB1,EA=EA1,
∴∠EBB1=∠EB1B,∠EAA1=∠EA1A,
∵∠BEB1=∠AEA1,
∴∠EBB1=∠EB1B=∠EAA1=∠EA1A,
∴△AA1E∽△BB1E.
(2)证明:连接BF,延长EB1交AA1于M.
∵∠BB1B=∠FB1M=∠MA1E,∠FMB1=∠EMA1,
∴△MFB1∽△MEA1,
∴=,
∴=,
∵∠EMF=∠A1MB1,
∴△MEF∽△MA1B1,
∴∠MFE=∠MB1A1=90°,
∴EF⊥AA1,
∵EA=EA1,
∴AF=FA1.
(3)解:在Rt△ABE中,∵AB=4,BE=1,
∴AE==,
∵DG=GC,
∴cos∠GBC=cos∠EAF===,
在Rt△AEF中,AF=AEcos∠EAF==.
科目:初中数学 来源: 题型:
【题目】定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.
(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.
(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A,B,C三点的位置如图,请在网格图中标出所有的格点D,使得以A,B,C,D为顶点的四边形为邻和四边形.
(3)如图3,△ABC中,∠ABC=90°,AB=4,BC=4,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,边长为6的正方形ABCD,动点P、Q各从点A,D同时出发,分别沿边AD,DC方向运动,且速度均为每秒1个单位长度.
(1)AQ与BP关系为________________;
(2)如图2,当点P运动到线段AD的中点处时,AQ与BP交于点E,试探究∠CEQ和∠BCE满足怎样的数量关系;
(3)如图3,将正方形变为菱形且∠BAD=60°,其余条件不变,设运动t秒后,点P仍在线段AD上,AQ交BD于F,且△BPQ的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )
A.点B坐标为(5,4)B.AB=ADC.a=D.OCOD=16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,BE平分∠DBC交CD于点E,将△BCE绕点C顺时针旋转90°得到△DCF,延长BE交DF于G,则BF的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.
(1)求证:PC是⊙O的切线;
(2)求证:CDDE=2ODPD;
(3)若AB=8,CDDE=15,求PA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为,点B的坐标为,抛物线的顶点为C.
(1)若抛物线经过点B时,求顶点C的坐标;
(2)若抛物线与线段恰有一个公共点,结合函数图象,求a的取值范围;
(3)若满足不等式的x的最大值为3,直接写出实数a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小腾的爸爸计划将一笔资金用于不超过10天的短期投资,针对这笔资金,银行专属客户经理提供了三种投资方案,这三种方案的回报如下:
方案一:每一天回报30元;
方案二:第一天回报8元,以后每一天比前一天多回报8元;
方案三:第一天回报0.5元,以后每一天的回报是前一天的2倍.
下面是小腾帮助爸爸选择方案的探究过程,请补充完整:
(1)确定不同天数所得回报金额(不足一天按一天计算),如下表:
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
方案一 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
方案二 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |
方案三 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 |
其中________;
(2)计算累计回报金额,设投资天数为(单位:天),所得累计回报金额是(单位:元),于是得到三种方案的累计回报金额,,与投资天数的几组对应值:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | |
8 | 24 | 48 | 80 | 120 | 168 | 224 | 288 | 360 | 440 | |
0.5 | 1.5 | 3.5 | 7.5 | 15.5 | 31.5 | 63.5 | 127.5 | 255.5 |
其中________;
(3)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,,并画出,,的图象;
注:为了便于分析,用虚线连接离散的点.
(4)结合图象,小腾给出了依据不同的天数而选择对应方案的建议:
_________________________________________________________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明同学设计的“过直线外一点作已知直线的平行线“的尺规作图过程.
已知:如图,直线和直线外一点.
求作:直线,使直线直线.
作法:如图,
①在直线上任取一点,作射线;
②以为圆心,为半径作弧,交直线于点,连接;
③以为圆心,长为半径作弧,交射线于点;分别以为圆心,大于长为半径作弧,在的右侧两弧交于点;
④作直线;
所以直线就是所求作的直线.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图中的图形;
(2)完成下面的证明:
证明:由作图可知平分,
.
又,
.(_______________________________)(填依据1).
,
.
,∴直线直线.(______________________)(填依据2).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com