科目:初中数学 来源: 题型:
如图2 - 63所示,抛物线y=x2—2x-3与x轴交于A,B两点(A点在B点左侧),直线l与抛物线交于A,C两点,其中C点的横坐标为2.
(1)求A,B两点的坐
标及直线AC的解析式;
(2)点P是线段AC上的一个动点,过点P作y轴的平行线交抛物线于点E,求线段PE长度的最大值;
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的
坐标为( ).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图2-131所示,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在x轴的正半轴上),与y轴交于
点C,矩形DEFG的一条边DE在线段AB上,顶点F,G分别在线段BC,AC上,抛物线P上的部分点的横坐标对
应的纵坐标如下.
| x | … | -3 | -2 | 1 | 2 | … |
| y | … | - | -4 | - | 0 | … |
(1)求A,B,C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系式,并
指出m的取值范围;
(3)当矩形DEFG的面积S最
大时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围;
(4)若点D的坐标为(1,0),求矩形DEFG的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com