精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.
解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

【答案】
(1)

解:点E是四边形ABCD的边AB上的相似点.

理由:∵∠A=55°,

∴∠ADE+∠DEA=125°.

∵∠DEC=55°,

∴∠BEC+∠DEA=125°.

∴∠ADE=∠BEC.

∵∠A=∠B,

∴△ADE∽△BEC.

∴点E是四边形ABCD的AB边上的相似点


(2)

解:作图如下:


(3)

解:∵点E是四边形ABCM的边AB上的一个强相似点,

∴△AEM∽△BCE∽△ECM,

∴∠BCE=∠ECM=∠AEM.

由折叠可知:△ECM≌△DCM,

∴∠ECM=∠DCM,CE=CD,

∴∠BCE= ∠BCD=30°,

∴BE= CE= AB.

在Rt△BCE中,tan∠BCE= =tan30°,


【解析】(1)要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.(2)根据两个直角三角形相似得到强相似点的两种情况即可.(3)因为点E是梯形ABCD的AB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AE和BE的数量关系,从而可求出解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有人,在扇形统计图中,m的值是
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】标准的篮球场长28m,宽15m.在某场篮球比赛中,红队甲、乙两名运动员分别在AB处,位置如图①所示,已知点B到中线EF的距离为6m,点C到中线EF的距离为8m,运动员甲在A处抢到篮球后,迅速将球抛向C处,球的平均运行速度是m/s,运动员乙在B处看到后同时快跑到C处并恰好接住了球(ABC在同一直线上).图②中l1l2分别表示球、运动员乙离A处的距离y(m)与从A处抛球后的时间x(s)的关系图象

(1)直接写出abc的值;

(2)求运动员乙由B处跑向C处的过程中y(m)x(s)的函数解析式l2

(3)运动员要接住球,一般在球距离自己还有2m远时要做接球准备,求运动员乙准备接此球的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,ACEF交于点H.

(1)求证:△ABE≌△AGF;

(2)AB=6,BC=8,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是某市部分简图,为了确定各建筑物的位置:

(1)请你以火车站为原点建立平面直角坐标系.

(2)写出市场的坐标为   ;超市的坐标为   

(3)请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOCCODBOD=2:3:4,且AOB三点在一条直线上,OEOF分别平分∠AOC和∠BODOG平分∠EOF,求∠GOF的度数.将下列解题过程补充完整.

解:因为,∠AOCCODBOD=2:3:4,

所以∠AOC=   COD=   BOD=   

因为OEOF分别平分∠AOC和∠BOD

所以∠AOE=   BOF=   

所以∠EOF=   

又因为   ,所以∠GOF=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?

(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,垂足为分别是边上一点.

(1)求证:

(2),求的度数.

查看答案和解析>>

同步练习册答案