精英家教网 > 初中数学 > 题目详情

【题目】已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;

(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.

【答案】(1)证明见解析;(2)ACE是直角三角形,理由见解析.

【解析】分析:(1)根据四边形ABCD和四边形BPEF是正方形,证明APE≌△CFE;(2)分别判断△ABC,△APE是等腰直角三角形得∠CAE=90°.

详解:(1)∵四边形ABCD和四边形BPEF是正方形,

ABBCBPBF,∴APCF

在△APE和△CFE中,

APCF,∠P=∠FPEEF

∴△APE≌△CFE

EAEC

(2)∵PAB的中点,

PAPB,又PBPE

PAPE

∴∠PAE=45°,又∠DAC=45°,

∴∠CAE=90°,即△ACE是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在已知线段AB的同侧构造∠FAB=∠GBA,并且在射线AF,BG上分别取点D和E,在线段AB上取点C,连结DC和EC.

Ⅰ、如图,若AD=3,BE=1,△ADC≌△BCE.在∠FAB=∠GBA=60或∠FAB=∠GBA=90两种情况中任选一种,解决以下问题:
①线段AB的长度是否发生变化,直接写出长度或变化范围;
②∠DCE的度数是否发生变化,直接写出度数或变化范围.
Ⅱ、若AD=a,BE=b,∠FAB=∠GBA=α,且△ADC和△BCE这两个三角形全等,请求出:
①线段AB的长度或取值范围,并说明理由;
②∠DCE的度数或取值范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.

(1)旋转中心是点 , 旋转角度是度;
(2)若连结EF,则△AEF是三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°AC=60cm∠A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是ts.过点DDF⊥BC于点F,连接DEEF

1)用t的代数式表示:AE=   DF=   

2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;

3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.请你经过观察、猜测线段FC、AE、EF之间是否存在一定的数量关系?若存在,证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═ ,那么CF:DF═

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线l:y=﹣ x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用同样规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当黑色瓷砖为28块时,白色瓷砖块数为(  )

A. 27 B. 28 C. 33 D. 35

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)-14-×[2-(-3)]; (2)(-3)-1×-6÷|-|;

(3)2×[5+]-(-|-4|÷);(4)--[-3+(-3)÷(-)].

查看答案和解析>>

同步练习册答案