精英家教网 > 初中数学 > 题目详情
3.如图,在菱形ABCD中,AE⊥BC交BC于点E,AF⊥CD交CD于点F,BE=EC,求∠EAF的度数.

分析 由菱形的性质和已知条件得出△ABC是等边三角形,得出∠B=60°,∠BCD=120°,由四边形内角和定理求出∠EAF的度数即可.

解答 解:AE⊥BC,BE=EC,
∴AC=AB,∠AEC=90°,
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,
∴AC=AB=BC,
∴△ABC是等边三角形,
∴∠B=60°,
∴∠BCD=120°,
∵AF⊥CD,
∴∠AFC=90°,
∴∠EAF=360°-90°-90°-120°=60°.

点评 本题考查了菱形的性质、等边三角形的判定与性质、四边形内角和定理;熟练掌握菱形的性质,证明三角形是等边三角形是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.当x=1,y=-$\frac{1}{5}$时,3x(2x+y)-2x(x-y)=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.已知xn=3,yn=2,则(xy)3n的值为216.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.线段AB上有两点P、Q,点P将AB分成两部分,AP:PB=2:3,点Q将AB也分成两部分,AQ:QB=4:1,且PQ=3cm,求AP、QB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.甲、乙两地相距350km,一列慢车从甲地开出,每小时行驶65km,一列快车从乙地开出,每小时行驶110km.
(1)两车同时开出,相向面行,经过多少小时相遇?
(2)若快车先开出30min,两车相向面行,慢车行驶多少小时后两车相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在△DCG中,以CD为边向外作菱形ABCD,B、C、G三点共线,连接AG交CD于E,过E作EF∥BG交DG于F.说明CE=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.计算(am+bn)(a2m-b2n)(am-bn)正确的是(  )
A.a4m-2a2mb2n+b4mB.a4m-b4C.a4m+b4nD.a2m+b2n+2ambn

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在平面直角坐标系中,一块等腰直角三角形ABC的直角顶点A在y轴上,坐标为(0,-1),另一顶点B坐标为(-2,0),已知二次函数y=$\frac{3}{2}$x2+bx+c的图象经过B,C两点,过点C作CD⊥y轴,垂足为点D
(1)求证:AO=CD;
(2)求经过点B和点C的二次函数的解析式;
(3)现将一把直尺放置砸直角坐标系中,使直尺的A′D′∥y轴且经过点B(如图),直尺沿x轴正方形平移,当A′D′与y轴重合时运动停止,若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;
(4)在(3)的条件下,设点P为直尺的A′D′上一点,Q为BC的中点,BP⊥PC,若把直尺平移到(2)题中的抛物线的对称轴处,求点P的坐标和∠CPA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在平面直角坐标系内,直线AB与x轴交于点B,与y轴交于点A,点C为x轴负半轴上的一点,过点C作CD⊥AB,垂足为D.
(1)求证:△BOD∽△BAC;
(2)若直线AB的解析式为y=-$\sqrt{3}$x+m,OD=2,求AC的长度.

查看答案和解析>>

同步练习册答案