【题目】如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为 .
【答案】
【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AB=2BC=4,AC=2 ,
∵△EDC是△ABC旋转而成,
∴BC=CD=BD= AB=2,
∵∠B=60°,
∴△BCD是等边三角形,
∴∠BCD=60°,
∴∠DCF=30°,∠DFC=90°,
即DE⊥AC,
∴DE∥BC,
∵BD= AB=2,
∴DF是△ABC的中位线,
∴DF= BC= ×2=1,CF= AC= ×2 = ,∴S阴影= DF×CF= × = .
先根据已知条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF是△ABC的中位线,由三角形的面积公式即可得出结论.
科目:初中数学 来源: 题型:
【题目】为了了解家长关注孩子成长方面的状况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如图不完整的条形统计图.
(1)补全条形统计图.
(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?
(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课间小明和小亮玩“剪刀、石头、布”游戏.游戏规则是:双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头,若双方出现相同手势,则算打平.若小亮和小明两人只比赛一局.
(1)请用树状图或列表法列出游戏的所有可能结果.
(2)求出双方打平的概率.
(3)游戏公平吗?如果不公平,你认为对谁有利?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2 ,
其中正确结论是( )
A.②④
B.①④
C.①③
D.②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC= AB;
(3)点M是 的中点,CM交AB于点N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=2x的图象与反比例函数y= k x 的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.
(1)求k的值;
(2)利用图象求出不等式2x> 的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.
(1)若ED⊥EF,求证:ED=EF;
(2)在(1)的条件下,若DC的延长线与FB交于点P,试判定四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);
(3)若ED=EF,ED与EF垂直吗?若垂直给出证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com