精英家教网 > 初中数学 > 题目详情

【题目】探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图

1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;

2)请你直接利用以上结论,解决以下问题:

如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XYXZ恰好经过点BC,若∠A40°,则∠ABX+ACX   °.

如图(3),DC平分∠ADBEC平分∠AEB,若∠DAE40°,∠DBE130°,求∠DCE的度数.

【答案】1)∠BDC=∠BAC+B+C,理由见解析;(2①50DCE85°.

【解析】

1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+B+C

2)①由(1)可得∠A+ABX+ACX=∠X,然后根据∠A40°,∠X90°,即可求解;

3)②由∠A40°,∠DBE130°,求出∠ADE+AEB的值,然后根据DCE=∠A+ADC+AEC,求出DCE的度数即可.

1)如图,∠BDC=∠BAC+B+C,理由是:

过点AD作射线AF

∵∠FDC=∠DAC+C,∠BDF=∠B+BAD

∴∠FDC+BDF=∠DAC+BAD+C+B

即∠BDC=∠BAC+B+C

2如图(2),∵∠X90°,

由(1)知:∠A+ABX+ACX=∠X90°,

∵∠A40°,

∴∠ABX+ACX50°,

故答案为:50

如图(3),∵∠A40°,∠DBE130°,

∴∠ADE+AEB130°﹣40°=90°,

DC平分∠ADBEC平分∠AEB

∴∠ADCADB,∠AECAEB

∴∠ADC+AEC45°,

∴∠DCE=∠A+ADC+AEC40°+45°=85°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 已知Rt△ABC中,AC=BC,∠C=90°,DAB边的中点,∠EDF=90°,∠EDFD点旋转,它的两边分别交ACCB(或它们的延长线)于EF.当∠EDFD点旋转到DEACE时(如图1),易证当∠EDFD点旋转到DEAC不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,又有怎样的数量关系?请写出你的猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( ) 个

A. 1 B. 2 C. 3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点FFGCD,交AE于点G,连接DG

(1)求证:四边形DEFG为菱形;

(2)若CD=8,CF=4,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.

其中,甲的折线图为虚线、乙的折线图为实线.

甲、乙两人的数学成绩统计表

1

2

3

4

5

甲成绩

90

40

70

40

60

乙成绩

70

50

70

a

70

1a      

2)请完成图中表示乙成绩变化情况的折线;

3S2260,乙成绩的方差是   ,可看出   的成绩比较稳定(填).从平均数和方差的角度分析,   将被选中.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=8,点PAB的中点,EBC上一动点,过P点作FP⊥PEACF点,经过P、E、F三点确定⊙O.

(1)试说明:点C也一定在⊙O上.

(2)点E在运动过程中,∠PEF的度数是否变化?若不变,求出∠PEF的度数;若变化,说明理由.

(3)求线段EF的取值范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一块含有45°的三角板ABC的顶点A放在⊙O上,且AC⊙O相切于点A(如图1),将△ABC从点A开始,绕着点A顺时针旋转,设旋转角为αα135°),旋转后,ACAB分别与⊙O交于点EF,连接EF(如图2).已知AC=8⊙O的半径为4

1)在旋转过程中,有以下几个量:EF的长;的长;③∠AFE的度数;OEF的距离.其中不变的量是___________________(填序号);

2)当α________°时,BC⊙O相切(直接写出答案);

3)当BC⊙O相切时,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘船由A港沿北偏东60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求AC两港之间的距离(结果保留到0.1km,参考数据:≈1.414≈1.732);

2)确定C港在A港的什么方向.

查看答案和解析>>

同步练习册答案