【题目】如图,已知AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)问题探究:线段OB,OC有何数量关系,并说明理由;
(2)问题拓展:分别连接OA,BC,试判断直线OA,BC的位置关系,并说明理由;
(3)问题延伸:将题目条件中的“CD⊥AB于D,BE⊥AC于E”换成“D、E分别为AB,AC边上的中点”,(1)(2)中的结论还成立吗?请直接写出结论,不必说明理由.
【答案】(1)OB=OC,理由见解析;(2) AO⊥BC,理由见解析;(3) (1)(2)中的结论还成立,理由见解析.
【解析】
(1)根据垂直定义求出∠ADC=∠AEB=90°,根据AAS推出△ADC≌△AEB,根据全等得出AD=AE,∠B=∠C,得出BD=CE,根据AAS推出△BDO≌△CEO即可得出结论;
(2)延长AO交BC于M,根据SAS推出△OBA≌△OCA,根据全等得出∠BAO=∠CAO,根据等腰三角形的性质推出即可;
(3)求出AD=AE,BD=CE,根据SAS推出△ADC≌△AEB,根据全等三角形的性质得出∠DBO=∠ECO,根据AAS推出△BDO≌△CEO,根据全等三角形的性质得出OB=OC,根据SAS推出△OBA≌△OCA,推出∠BAO=∠CAO,根据等腰三角形的性质得出即可.
(1)∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,
在△ADC和△AEB中,
∵,
∴△ADC≌△AEB(AAS),∴AD=AE,∠B=∠C.
∵AB=AC,∴BD=CE,
在△BDO和△CEO中,
∵,
∴△BDO≌△CEO(AAS),∴OB=OC;
(2)AO⊥BC.理由如下:
延长AO交BC于M.
在△OBA和△OCA中,
∵,
∴△OBA≌△OCA(SAS),
∴∠BAO=∠CAO.
∵AB=AC,∴AO⊥BC;
(3)(1)(2)中的结论还成立.理由如下:
∵D、E分别为AB,AC边上的中点,AC=AB,∴AD=AE,BD=CE,
在△ADC和△AEB中,
∵,∴△ADC≌△AEB(SAS),∴∠DBO=∠ECO,
在△BDO和△CEO中,
∵,∴△BDO≌△CEO(AAS),∴OB=OC,
在△OBA和△OCA中,
∵,∴△OBA≌△OCA(SAS),∴∠BAO=∠CAO.
∵AB=AC,∴AO⊥BC.
科目:初中数学 来源: 题型:
【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验与操作:
小明是一位动手能力很强的同学,他用橡皮泥做成一个棱长为的正方体.
如图所示,在顶面中心位置处从上到下打一个边长为的正方形孔,打孔后的橡皮泥块的表面积为________;
如果在第题打孔后,再在正面中心位置(如图中的虚线所示)从前到后打一个边长为的正方形通孔,那么打孔后的橡皮泥块的表面积为________;
如果把、中的边长为的通孔均改为边长为的通孔,能否使橡皮泥块的表面积为?如果能,求出,如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数.
(1)当时,求该抛物线与坐标轴的交点的坐标;
(2)当时,求的最大值;
(3)若直线与二次函数的图象交于、两点,问线段的长度是否是定值?如果是,求出其长度;如果不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学概念:百度百科上这样定义绝对值函数:y=│x│=
并给出了函数的图像(如图).
方法迁移
借鉴研究正比例函数y=kx与一次函数y=kx+b(k,b是常数,且k≠0)之间关系的经验,我们来研究函数y=│x+a│(a是常数)的图像与性质.
“从‘1’开始”
我们尝试从特殊到一般,先研究当a=1时的函数y=│x+1│.
按照要求完成下列问题:
(1)观察该函数表达式,直接写出y的取值范围;
(2)通过列表、描点、画图,在平面直角坐标系中画出该函数的图像.
“从‘1’到一切”
(3)继续研究当a的值为-2,-,2,3,…时函数y=│x+a│的图像与性质,
尝试总结:
①函数y=│x+a│(a≠0)的图像怎样由函数y=│x│的图像平移得到?
②写出函数y=│x+a│的一条性质.
知识应用
(4)已知A(x1,y1),B(x2,y2)是函数y=│x+a│的图像上的任意两点,且满足x1<x2≤-1时, y1>y2,则a的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△.
(1)在图中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).
(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;
(3)如图,在(1)的条件下,点、分别是、边上的点,且△的周长等于边的长,试探究与的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com