精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,点ECD的中点,点FBC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____

【答案】1.

【解析】

连接AF,由ECD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形∠AEF=45°.

解:连接AF,

∵ECD的中点

∴CE=,AB=2,

∵FC=2BF,AD=3,

∴BF=1,CF=2,

∴BF=CE,FC=AB,

∵∠B=∠C=90°,

∴△ABF≌△FCE,

∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,

∴∠AFE=90°,

∴△AFE是等腰直角三角形

∴∠AEF=45°,

∴tan∠AEF=1.

故答案为:1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2﹣6x+9与直线y=x+3交于A,B两点(点A在点B的左侧),抛物线的顶点为C,直线y=x+3x轴交于点D.

(Ⅰ)求抛物线的顶点C的坐标及A,B两点的坐标;

(Ⅱ)将抛物线y=x2﹣6x+9向上平移1个单位长度,再向左平移t(t>0)个单位长度得到新抛物线,若新抛物线的顶点EDAC内,求t的取值范围;

(Ⅲ)点P(m,n)(﹣3<m<1)是抛物线y=x2﹣6x+9上一点,当PAB的面积是ABC面积的2倍时,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABACCDABDBEACEBECD相交于点O

1)问题探究:线段OBOC有何数量关系,并说明理由;

2)问题拓展:分别连接OABC,试判断直线OABC的位置关系,并说明理由;

3)问题延伸:将题目条件中的“CDABDBEACE”换成“DE分别为ABAC边上的中点,(1)(2)中的结论还成立吗?请直接写出结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,点开始沿折线的速度运动,点开始沿边以的速度移动,如果点分别从同时出发,当其中一点到达时,另一点也随之停止运动,设运动时间为,当________时,四边形也为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,BEEC,将正方形ABCD的边CD沿DE折叠到DF,连接EFFCFB,若DFC的面积为16,则BEF的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,O是对角线ACBD的交点,MBC边上的动点(M不与B、C重合),过点CCN垂直DMAB于点N,连结OM、ON、MN.下列五个结论:①△CNB≌△DMC;ONOM;AB=2,则的最小值是1;.其中正确结论是_________.(只填番号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).

(Ⅰ)求二次函数的解析式及点A,B的坐标;

(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;

(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】植树节期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.

(1)用树状图或列表法求出小王去的概率;

(2)小李说:这种规则不公平,你认同他的说法吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的外角,平分平分,且交于点

(1)求证:

(2)猜想:若,求的度数.

查看答案和解析>>

同步练习册答案