精英家教网 > 初中数学 > 题目详情

如图(1),Rt△ABC和Rt△EFD中,AC与DE重合,AB=EF=1,∠BAC=∠DEF=90º,∠ ACB=∠EDF=30º,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止。现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它的延长线) 于G,H点,如图(2)

(1)问:始终与△AGC相似的三角形是     

(2)设CG=x,BG=y,求y关于x的函数关系式;

(3)问:当x为何值时,△HGA是等腰三角形。


(1)△HGA。

(2)∵∠BAC =90º,∠ ACB =30º,AB =1,∴,即。∴

                 又∵BC=2,∴

                 ∴y关于x的函数关系式为

            (3)由(1)知,△AGC∽△HGA,若△HGA是等腰三角形,则AGC也是等腰三角形。所以分两种情况:

①当CG=AG时,AG是Rt△ABC斜边上的中线, 此时,x=CG=BC=1。             

②当CG= CA时, x=CG=

                 ∴当x=1或时,△AGH是等腰三角形。

【考点】面动旋转问题,含30度角直角三角形的性质,三角形内角和外角性质,相似三角形的判定和性质,等腰三角形的判定,由实际问题列函数关系式,分类思想的应用。

           (3)考虑CG=AG和CG= CA两种情况分别求解即可。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,平面直角坐标系中,⊙O半径长为1.点⊙P(a,0),⊙P的半径长为2,把⊙P向左平移,当⊙P与⊙O相交时,a值的取值范围为         

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在半径为2的扇形AOB中,∠AOB=60°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.

(1)当BC=1时,求线段OD的长;

(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;

(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.

(1)若直线AB解析式为

①求点C的坐标;

②求△OAC的面积.

(2)如图2,作的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点PQ运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为tt >0)秒.

(1)求线段AC的长度;

(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;

(3)伴随着PQ两点的运动,线段PQ的垂直平分线为l

①当l经过点A时,射线QPAD于点E,求AE的长;

②当l经过点B时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,四边形ABCD是平行四边形,过点A、C、D作抛物线,与x轴的另一交点为E,连结CE。

(1)求点A、B、C、D的坐标;

(2)已知抛物线的对称轴l交x轴于点F,交线段CD于点K,点M、N分别是直线l和x轴上的动点,连结MN,当线段MN恰好被BC垂直平分时,求点N的坐标;

(3)在满足(2)的条件下,过点M作一条直线,使之将四边形ABCD的面积分为2:3的两部分,设该直线与x轴交于点P,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧)点

A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.

(1)请直接写出点A、点B的坐标.

(2)请求出该二次函数表达式及对称轴和顶点坐标.

(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.

(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-1,0)、B(-3,1)、C(0,2)。将△ABC沿x轴的反方向平移,在第二象限内B、C两点的对应点B′、C′正好落在反比例函数的图像上,直线B′C′交y轴于点G。问是否存在x轴上的点M和反比例函数图像上的点P,使得四边形PGMC′是平行四边形。如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。

查看答案和解析>>

同步练习册答案