精英家教网 > 初中数学 > 题目详情

【题目】学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.

(1)求甲、乙两种办公桌每张各多少元?

(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.

【答案】(1)甲种办公桌每张400元,乙种办公桌每张600元;(2)当甲种办公桌购买30张,购买乙种办公桌10张时,y取得最小值,最小值为26000元.

【解析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数-5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;
(2)设甲种办公桌购买a张,则购买乙种办公桌(40-a)张,购买的总费用为y,根据总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数得出函数解析式,再由甲种办公桌数量不多于乙种办公桌数量的3得出自变量a的取值范围,继而利用一次函数的性质求解可得.

1)设甲种办公桌每张x元,乙种办公桌每张y元,
根据题意,得:


解得:
答:甲种办公桌每张400元,乙种办公桌每张600元;
(2)设甲种办公桌购买a张,则购买乙种办公桌(40-a)张,购买的总费用为y,
y=400a+600(40-a)+2×40×100
=-200a+32000,
a≤3(40-a),
a≤30,
-200<0,
ya的增大而减小,
∴当a=30时,y取得最小值,最小值为26000元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算):

价目表

每月用水量

单价

不超过6的部分

2/

超出6不超出10的部分

4/

超出10的部分

8

请根据上表的内容解答下列问题:

1)填空:若该户居民2月份用水5,则应交水费 元;3月份用水8,则应收水费 元;

2)若该户居民4月份用水(其中),则应交水费多少元(用含的代数式表示,并化简);

3)若该户居民56两个月共用水146月份用水量超过了5月份),设5月份用水,直接写出该户居民56两个月共交水费多少元(用含的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,两块形状、大小完全相同的三角板按照如图所示的样子放置,找一找图中是否有互相平行的线段,完成下面证明:

证明:

∵∠______=______

__________________)(填推理的依据)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为2a,宽为2b 长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形。

(1)2的阴影部分的正方形的边长是 .

(2)用两种不同的方法求图中阴影部分的面积.

(方法1S阴影=

(方法2S阴影=

3)观察如图2,写出(a+b)2(a-b)2ab三个代数式之间的等量关系.

4)根据(3)题中的等量关系,解决问题:若x+y=10xy=16,x-y的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个角的差的绝对值等于,就称这两个角互为反余角,其中一个角叫做另一个角的反余角,例如,,则互为反余角,其中的反余角,也是的反余角.

如图为直线AB上一点,于点O于点O,则的反余角是______的反余角是______

若一个角的反余角等于它的补角的,求这个角.

如图2O为直线AB上一点,,将绕着点O以每秒角的速度逆时针旋转得,同时射线OP从射线OA的位置出发绕点O以每秒角的速度逆时针旋转,当射线OP与射线OB重合时旋转同时停止,若设旋转时间为t秒,求当t为何值时,互为反余角图中所指的角均为小于平角的角

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学完《全等三角形》知识后知道:满足“SSA”的两个三角形不一定全等,如图①,∠AAB分别是ABCABD公共角与公共边,且AC=AD,但ABCABD不全等,但在特殊条件下“SSA”也可以确定两个三角形全等.如图②,∠MAB为锐角,AB=5,点B到射线AM的距离为3,点C在射线AM上,BC=x,当x的取值范围是__________时,ABC的形状、大小是唯一确定。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)

(1)守门员最后是否回到球门线上?

(2)守门员离开球门线的最远距离达多少米?

(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用表示直角三角形的两直角边(),下列四个说法:

.

其中说法正确的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.

(1)如图1,当点E在BC边上时.求证:①△ABMCBM;CGCM.

(2)如图2,当点E在BC的延长线上时,(1)中的结论是否成立?请写出结论,不用证明.

(3)试问当点E运动到什么位置时,MCE是等腰三角形?请说明理由.

查看答案和解析>>

同步练习册答案