【题目】已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)求抛物线的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.
【答案】(1) y=-x2+4x-3=-(x-2)2+1,顶点坐标为(2,1).(2)答案见解析.
【解析】试题分析:(1)利用交点式得出y=a(x-1)(x-3),进而得出a的值,再利用配方法求出顶点坐标即可;
(2)根据左加右减得出抛物线的解析式为y=-x2,进而得出答案.
试题解析:(1)∵抛物线与x轴交于点A(1,0),B(3,0),
可设抛物线解析式为y=a(x-1)(x-3),
把C(0,-3)代入得:3a=-3,
解得:a=-1,
故抛物线解析式为y=-(x-1)(x-3),
即y=-x2+4x-3,
∵y=-x2+4x-3=-(x-2)2+1,
∴顶点坐标(2,1);
(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上.
科目:初中数学 来源: 题型:
【题目】矩形的一个内角平分线把矩形的一条边分成3cm和5cm两部分,则矩形的周长( )
A.16cm B.22cm和16cm C.26cm D.22cm和26cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B、P、Q三点为顶底的三角形是等腰三角形?
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.
(1)求证:AB为⊙C直径.
(2)求⊙C的半径及圆心C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com