精英家教网 > 初中数学 > 题目详情

【题目】如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.

(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.
(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.
(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移 个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.

【答案】
(1)解:当a=﹣3时,y=﹣3x+2,

当y=0时,﹣3x+2=0,

x=

∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),

∴0<m< ,,DANG

﹣3x+2=

当x=m时,﹣3m+2=

∴k=﹣3m2+2m(0<m<


(2)解:由题意得:

ax+2=

ax2+2x﹣k=0,

∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,

∴△=4+4ak=0,

ak=﹣1,

∴k=﹣

解得:

∵OM=

∴12+(﹣ 2=( 2

a=±


(3)解:当a=﹣2时,y=﹣2x+2,

∴点A的坐标为(1,0),点B的坐标为(0,2),

∵将Rt△AOB在第一象限内沿直线y=x平移 个单位得到Rt△A′O′B′,

∴A′(2,1),B′(1,3),

点M是Rt△A′O′B′斜边上一动点,

当点M′与A′重合时,k=2,

当点M′与B′重合时,k=3,

∴k的取值范围是2≤k≤3


【解析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m< );(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长是4的平分线交于点,若点分别是上的动点,则的最小值是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形中,平分,交于点,且,延长的延长线交于点,连接.下列结论:①;②是等边三角形;③;④;⑤中正确的有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线ACBD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E

1)证明:四边形ACDE是平行四边形;

2)若AC=8BD=6,求△ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-31),B(-24).

1)请你在方格中建立直角坐标系,并写出C点的坐标;

2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(ab),则点P的对应点P1的坐标是

3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EF分别是边ABCD上的点,AE=CF,连接EFBFEF与对角线AC交于O点,且BE=BF∠BEF=2∠BAC

1)求证:OE=OF

2)若BC=,求AB的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCO的顶点AC分别在直线x2x7上,O是坐标原点,则对角线OB长的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中,没有实数根的是(

A.B.

C.D.

查看答案和解析>>

同步练习册答案