精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形的边长是4的平分线交于点,若点分别是上的动点,则的最小值是__________

【答案】

【解析】

的垂线交F,交ACD′,再过D′作D′P′AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.

解:过的垂线交F,交ACD′,再过D′作D′P′AD,如下图,

DD′AE

∴∠AFD=AFD′

AF=AF,∠DAE=CAE

∴△DAF≌△D′AF

D′D关于AE的对称点,AD′=AD=4

D′P′即为DQ+PQ的最小值,

∵四边形ABCD是正方形,
∴∠DAD′=45°

AP′=P′D′

RtAP′D′中,
P′D′2+AP′2=AD′2AD′2=16
AP′=P′D'
2P′D′2=AD′2,即2P′D′2=16
P′D′=

的最小值是

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正确的结论是( )

A.①②
B.①③
C.①③④
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:
①c>0;
②若点B(﹣ ,y1)、C(﹣ ,y2)为函数图象上的两点,则y1<y2
③2a﹣b=0;
<0,
其中,正确结论的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边的边 上一点,延长线上一点,接交,过点作点.证明下列结论:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰RtACB,∠ACB90°,ACBC,点AC分别在x轴、y轴的正半轴上.

1)如图1,求证:∠BCO=∠CAO

2)如图2,若OA5OC2,求B点的坐标

3)如图3,点C03),QA两点均在x轴上,且SCQA18.分别以ACCQ为腰在第一、第二象限作等腰RtCAN、等腰RtQCM,连接MNy轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD在平面直角坐标系中,ADBCx轴,ABDCy轴,x轴与y轴夹角为90°,点MN分别在xy轴上,点A18),B16),C76),D78).

1)连接线段OBODBD,求OBD的面积;

2)若长方形ABCD在第一象限内以每秒0.5个单位长度的速度向下平移,经过多少秒时,OBD的面积与长方形ABCD的面积相等请直接写出答案;

3)见备用图,连接 OBODODBC于点E,∠BON的平分线和∠BEO的平分线交于点F

①当∠BEO的度数为n,∠BON的度数为m时,求∠OFE的度数.

②请直接写出∠OFE和∠BOE之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:把形如的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即.例如:的一种形式的配方;所以,的三种不同形式的配方(即余项分别是常数项、一次项、二次项).

请根据阅读材料解决下列问题:

1)比照上面的例子,写出三种不同形式的配方;

2)已知,求的值;

3)已知,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC=6,ACB90°,ABC的平分线交AC于点DEAB上一点,且BE=BCCFEDBD于点F,连接EF,ED.

1)求证:四边形CDEF是菱形.

2)当∠ACB 度时,四边形CDEF是正方形,请给予证明;并求此时正方形的边长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.

(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.
(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.
(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移 个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.

查看答案和解析>>

同步练习册答案