精英家教网 > 初中数学 > 题目详情
8.根据下列已知条件,能惟一画出△ABC的是(  )
A.AB=3,BC=4,CA=8B.∠A=60°,∠B=45°,AB=4
C.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6

分析 根据三角形的三边关系以及确定三角形的条件有SAS、AAS、ASA、SSS、HL,即可判断.

解答 解:A、错误.∵3+4<8,不能够成三角形.
B、正确.已知两角夹边,三角形就确定了.
C、错误.边边角不能确定三角形.
D、错误.一角一边不能确定三角形.
故选B.

点评 本题考查全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.观察如图图形的特点:

有几组全等图形?请一一指出:1与6、2与12、3与5与11、4与9、7与10.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.已知△ABC≌△A′B′C′,∠A=78°,∠B=55°,A′B′=15,则∠C=47°,AB=15.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.⊙O中,弦AB的长恰等于半径,则弧$\widehat{AB}$的度数是60度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.关于x,y的方程组$\left\{\begin{array}{l}{x+2y=a}\\{2x+y=2a-6}\end{array}\right.$的解满足x+y>7,则a的取值范围是a>9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,抛物线y=x2+(5k+1)x+5k (5k>1)与x轴交于点A、B,与y轴交于点C,点D在坐标平面内,AD⊥BC,OD=5,点E在抛物线上,OD⊥OE,OD=OE,
(1)求抛物线解析式;
(2)过点C作直线l∥x轴,x轴上有一个动点F,过F作FM⊥BC、FN⊥直线l,分别交线段BC、直线l于点M、N,设△CMN的面积为S,点F的横坐标为t,求S与t之间的函数关系式,并写出相应的自变量t的取值范围.
(3)在(2)的条件下,当点F在x轴正半轴时,将∠MFN绕点F顺时针旋转30°,角的两边分别交射线BC和直线l于点P、Q,当PF平分∠BPQ时,求F点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直径AD折叠,使点C恰好与AB边上的点E重合,求出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.先化简再求值:(a+2b)(2a-b)-(a+2b)2-(a-2b)(a+2b),其中a=-$\frac{1}{3}$,b=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如果x+y=5,x2+y2=21,那么(x-y)2=17.

查看答案和解析>>

同步练习册答案