分析 首先延长BA与CD,相交于点G,由AD∥EF∥BC,可得△GAD∽△GEF,△GAD∽△GBC,又由AD=2,EF=5,根据相似三角形的对应边成比例,即可求得BC的长.
解答
解:延长BA与CD,相交于点G,
∵AD∥EF∥BC,
∴△GAD∽△GEF,△GAD∽△GBC,
∴$\frac{AD}{EF}$=$\frac{GA}{GB}$=$\frac{AD}{BC}$,
∵AD=2,EF=,AE=9,
∴$\frac{2}{5}$=$\frac{GA}{GA+9}$,
解得:GA=6,
∴GB=GA+AE+BE=18,
∴$\frac{6}{18}$=$\frac{2}{BC}$,
解得:BC=6.
故答案为:6.
点评 此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com