精英家教网 > 初中数学 > 题目详情

【题目】如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.

(1)若正方形ABCD的边长为2,则点B、C的坐标分别为   

(2)若正方形ABCD的边长为a,求k的值.

【答案】(1)(1,2),(3,2)(2)

【解析】

(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;

(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.

(1)∵正方形边长为2,

AB=2,

在直线y=2x中,当y=2时,x=1,

B(1,2),

OA=1,OD=1+2=3,

C(3,2),

故答案为:(1,2),(3,2);

(2)∵正方形边长为a,

AB=a,

在直线y=2x中,当y=a时,x=

OA=,OD=

C(,a),

C(,a)代入y=kx,得a=k×

解得:k=

故答案为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,APD的面积为y.(当点P与点AD重合时,y=0)

(1)写出yx之间的函数解析式;

(2)画出此函数的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.

(1)求购买1块电子白板和一台笔记本电脑各需多少元?

(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?

(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DF,连接CE、AF.

(1)证明:AF=CE;

(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD的长AB为5,宽BC为4,E是BC边上的一个动点,AE⊥EF,EF交CD于点F.设BE=x,FC=y,则点E从点B运动到点C时,能表示y关于x的函数关系的大致图像是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给定一列数,我们把这列数中的第一个数记为a1,第二个数记为a2,第三个数记为a3,依此类推,第n个数记为an(n为正整数),如下面这列数2,4,6,8,10中,a1=2,a2=4,a3=6,a4=8,a5=10.规定运算sum(a1:an)=a1+a2+a3+…+an.即从这列数的第一个数开始依次加到第n个数,如在上面的一列数中,sum(a1:a3)=2+4+6=12.

(1)已知一列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,求a3,sum(a1:a10的值

(2)已知这列数1,﹣2,3,﹣4,5,﹣6,7,﹣8,9,﹣10,…,按照规律可以无限写下去,求a2018,sum(a1:a2018的值

(3)在(2)的条件下否存在正整数n使等式|sum(a1:an)|=50成立?如果有,写出n的值,如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】受地震的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤.超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从两养殖场调运鸡蛋到超市的路程和运费如表:

到超市的路程(千米)

运费(元/斤千米)

甲养殖场

200

0.012

乙养殖场

140

0.015


(1)若某天调运鸡蛋的总运费为2670元,则从甲、乙两养殖场各调运了多少斤鸡蛋?
(2)设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中MBC的中点且MN与折痕PQ交于F.连接AC′,BC′,则图中共有等腰三角形的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,OE=OF.求证:△AOE≌△BOF,AE⊥BF.

查看答案和解析>>

同步练习册答案