【题目】如图,抛物线与轴交于两点(点在点左侧),与轴交于点的面积为.动点从点出发沿方向以每秒个单位的速度向点运动,过作轴交于.交抛物线于.
求抛物线的解析式.
当最大时,求运动的时间.
经过多长时间,点到点、点的距离相等?
科目:初中数学 来源: 题型:
【题目】对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间是一次函数关系.如图所示是一个家用温度表的表盘、其左边为摄氏温度的刻度和读数(单位),右边为华氏温度的刻度和读数(单位).从温度计的刻度上可以看出,摄氏温度与华氏温度部分对应关系如下表:
··· | ··· | |||
··· | ··· |
(1)求与之间的函数关系式;
(2)当摄氏温度为零下时,求华氏温度为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“一带一路”倡议提出五年多来,交通、通信、能源等各项相关建设取得积极进展,也为增进各国民众福祉提供了新的发展机遇.下图是2017年“一年一路”沿线部分国家的通信设施现状统计图.
根据统计图提供的信息,下列推断合理的是( ).
A.互联网服务器拥有个数最多的国家是阿联酋
B.宽带用户普及率的中位数是11.05%
C.有8个国家的电话普及率能够达到平均每人1部
D.只有俄罗斯的三项指标均超过了相应的中位数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将抛物线向右平移个单位,再向上平移个单位,得到抛物线,直线与的一个交点记为,与的一个交点记为,点的横坐标是,点在第一象限内.
(1)求点的坐标及的表达式;
(2)点是线段上的一个动点,过点作轴的垂线,垂足为,在的右侧作正方形.
①当点的横坐标为时,直线恰好经过正方形的顶点,求此时的值;
②在点的运动过程中,若直线与正方形始终没有公共点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用4年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备用,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在4年使用期内更换的易损零件数,得下面的条形图:
(1)以这100台机器为样本,估计“1台机器在4年使用期内更换易损零件数小于10”的概率;
(2)以购买易损零件所需费用为决策依据,试说明购进1台该机器时,一次性额外购买易损零件9个还是10个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】春临大地,学校决定给长12米,宽9米的一块长方形展示区进行种植改造现将其划分成如图两个区域:区域Ⅰ矩形ABCD部分和区域Ⅱ四周环形部分,其中区域Ⅰ用甲、乙、丙三种花卉种植,且EF平分BD,G,H分别为AB,CD中点.
(1)若区域Ⅰ的面积为Sm2,种植均价为180元/m2,区域Ⅱ的草坪均价为40元/m2,且两区域的总价为16500元,求S的值.
(2)若AB:BC=4:5,区域Ⅱ左右两侧草坪环宽相等,均为上、下草坪环宽的2倍
①求AB,BC的长;
②若甲、丙单价和为360元/m2,乙、丙单价比为13:12,三种花卉单价均为20的整数倍.当矩形ABCD中花卉的种植总价为14520元时,求种植乙花卉的总价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O及⊙O外一点P.
(1)方法证明:如何用直尺和圆规过点P作⊙O的一条切线呢?小明设计了如图①所示的方法:
①连接OP,以OP为直径作⊙O′;
②⊙O′与⊙O相交于点A,作直线PA.
则直线PA即为所作的过点P的⊙O的一条切线.
请证明小明作图方法的正确性.
(2)方法迁移:如图②,已知线段l,过点P作一条直线与⊙O相交,且该直线被⊙O所截得的弦长等于l.(保留作图痕迹,不要求写作法和证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数在第一象限的图象如图所示,过上任意一点,作轴垂线交于点,交轴于点,作轴垂线,交于点,交轴于点,直线分别交轴,轴于点,则__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为( )
A. y=﹣ B. y=﹣ C. y=﹣ D. y=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com