【题目】如图,反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).
(1)求△AOB的面积;
(2)结合图象直接写出y1<y2时x的取值范围 .
【答案】(1)3;(2)﹣2<x<0或x>1
【解析】
(1)根据待定系数法,可得函数解析式,设直线AB交y轴于点C,再根据△AOB的面积=△AOC的面积+△BOC的面积即可求得答案;
(2)根据一次函数图象在上方的部分是不等式的解,可得答案.
(1)∵反比例函数y1=的图象过点A(1,4),即4=,
∴k=4,即反比例函数为:y1=,
又∵点B(m,﹣2)在y1=上,
∴m=﹣2,
∴B(﹣2,﹣2),
又∵一次函数y2=ax+b过A、B两点,
∴,
解得.
∴一次函数的解析式为 y2=2x+2,
设直线AB交y轴于点C,则点C的坐标为(0,2),
∴△AOB的面积=
(2)要使y1<y2,即函数y1的图象总在函数y2的图象下方,
∴﹣2<x<0或x>1,
故答案为:﹣2<x<0或x>1.
科目:初中数学 来源: 题型:
【题目】在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:
(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);
(信息二)图中,从左往右第四组的成绩如下
75 | 75 | 79 | 79 | 79 | 79 | 80 | 80 |
81 | 82 | 82 | 83 | 83 | 84 | 84 | 84 |
(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):
小区 | 平均数 | 中位数 | 众数 | 优秀率 | 方差 |
A | 75.1 | 79 | 40% | 277 | |
B | 75.1 | 77 | 76 | 45% | 211 |
根据以上信息,回答下列问题:
(1)求A小区50名居民成绩的中位数.
(2)请估计A小区500名居民中能超过平均数的有多少人?
(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数交轴于点,交轴于点,在轴上有点,连接.
(1)求二次函数的解析式;
(2)若点为抛物线在x轴负半轴上方的一个动点,设点的横坐标为的面积为,求关于的函数解析式,并写出的取值范围;
(3)抛物线对称轴上是否存在点,使为等腰三角形?若存在,请直接写出所有点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数与二次函数在同一坐标系中的图象如图所示,则其解析式可能是( )
A.y=,y=kx2+kxB.y=,y=kx2﹣kx
C.y=﹣,y=﹣kx2﹣kxD.y=﹣,y=kx2+kx
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在扇形OMN中,∠MON=90°,OM=6,△ABC是扇形的内接三角形,其中A、C、B分别在半径OM、ON和弧MN上,∠ACB=90°,BC:AC=3:8,则线段BC的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为平行四边形,AD=1,AB=3,∠DAB=60°,点E为边CD上一动点,过点C作AE的垂线交AE的延长线于点F.
(1)求∠D的度数;
(2)若点E为CD的中点,求EF的值;
(3)当点E在线段CD上运动时,是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,E为CD边上一点,且AE、BE分别平分∠DAB、∠ABC.
(1)求证:△ADE≌△BCE;
(2)已知AD=3,求矩形的另一边AB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)请直接写出y关于x之间的关系式 ;
(2)设该商铺销售这批商品获得的总利润(总利润=总销售额一总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?
(3)若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是 .(可借助二次函数的图象直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com