精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,EF分别是边BCAD上的点,有下列条件:

AECF;②BEFD;③∠1=∠2;④AECF.

若要添加其中一个条件,使四边形AECF一定是平行四边形,则添加的条件可以是(   )

A. ①②③④ B. ①②③ C. ②③④ D. ①③④

【答案】B

【解析】

由四边形ABCD是平行四边形,可得ADBCAD=BC,∠BAD=BCD,然后利用平行四边形的判定分别分析求解,即可求得答案;注意利用举反例的方法可排除错误答案.

∵四边形ABCD是平行四边形,

ADBCAD=BC,∠BAD=BCD

∴当①AECF时,四边形AECF是平行四边形;故①正确;

当②BE=FD时,CE=AF,则四边形AECF是平行四边形;故②正确;

当③∠1=2时,∠EAF=ECF

∵∠EAF+AEC=180,AFC+ECF=180

∴∠AFC=AEC

∴四边形AECF是平行四边形;故③正确;

④若AE=AF,则四边形AECF是平行四边形或等腰梯形,故④错误.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中的位置如图所示.

1)分别写出各点的坐标:___________________________________

2是由经过怎样的平移变换得到的?答:___________________

3)若点内部一点,则内部的对应点的坐标为___________

4)求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】低碳环保,绿色出行的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150/分的速度骑行一段时间,休息了5分钟,再以m/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y()与时间x(分钟)的关系如图.请结合图象,解答下列问题:

(1)填空:a=________;b=________;m=________.

(2)若小军的速度是 120 /分,求小军第二次与爸爸相遇时距图书馆的距离.

(3)(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100 米,此时 小军骑行的时间为________分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知直线l1l2,且l3l1l2分别交于AB两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是____

(2)如图②,点AB处北偏东40°方向,在C处北偏西45°方向,则∠BAC____°.

(3)如图③,∠ABD和∠BDC的平分线交于点EBEAB于点F,∠1+∠290°,试说明:ABAB,并探究∠2与∠3的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(11),第2次接着运动到点(20),第3次接着运动到点(32),,按这样的运动规律,经过第2017次运动后,动点P的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.

(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标;E点的坐标
(2)如图②,若AE上有一动点P(不与A、E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;t取何值时,S有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A、M、E为顶点的三角形为等腰三角形,并求出相应时刻点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=AC=5,AB=8,CDAB边的高,点Ax轴上,点By轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒4个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动.当△ABC的边与坐标轴平行时,t_____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线ACBD相交于点OABACAB3cmBC5cm.PA点出发沿AD方向匀速运动,速度为1cm/s.连结PO并延长交BC于点Q,设运动时间为t(0t5)

(1)t为何值时,四边形ABQP是平行四边形?

(2)设四边形OQCD的面积为y(cm2),求yt之间的函数关系式;

(3)是否存在某一时刻t,使点O在线段AP的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.

  备用图

查看答案和解析>>

同步练习册答案