【题目】如图,已知四边形ABCD中,点E是CD上的点(不与CD的中点重合), DE=AB, ∠BAC=∠D,AD=AC
(1)求证:四边形AECB是等腰梯形;
(2)点F 是AB 边延长线上一点,且BC=CF .联结CF、EF,若AC⊥EF求证:四边形AECF是菱形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)由AD=AC,证得∠D=∠ACD,由∠BAC=∠D,推出∠ACD=∠BAC,由平行线的判定推出AB∥DC,根据全等三角形的判定证得△ADE≌△CAB,即可证得AE=BC,由等腰梯形的判定即可证得结论;
(2)首先证明△AEC≌△CFA,通过全等三角形的性质得到AF=CE,推出四边形AECF是平行四边形,然后由菱形的判定定理即可得到结论.
证明:(1)∵AD=AC,
∴∠D=∠ACD,
∵∠BAC=∠D,
∴∠ACD=BAC,
∴AB∥DC,
在△ADE和△CAB中, ,
∴△ADE≌△CAB(SAS),
∴AE=BC,
∴四边形AECB是等腰梯形;
(2)由(1)得AE=BC,∠AEC=∠BCE,AB∥EC,
∴∠FBC=∠BCE,∠FAC=∠ACE
∵BC=CF,
∴AE=CF,∠FBC=∠BFC,
∴∠BFC=∠AEC,
在△AEC和△CFA中,,
∴△AEC≌△CFA (AAS),
∴AF=CE,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴平行四边形AECF是菱形.
科目:初中数学 来源: 题型:
【题目】(背景知识)
数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a-b|,若a>b,则可简化为AB=a-b;线段AB的中点M表示的数为 .
(问题情境)
已知数轴上有A、B两点,分别表示的数为-10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).
(综合运用)
(1)运动开始前,A、B两点的距离为______;线段AB的中点M所表示的数______.
(2)点A运动t秒后所在位置的点表示的数为______;点B运动t秒后所在位置的点表示的数为______;(用含t的式子表示)
(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?
(4)若A,B按上述方式运动,直接写出中点M的运动方向和运动速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC的度数为( )
A. α B. C. 90﹣α D. 90﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑,两人的运动手环记录时间和步数如下:
出发 | 途中 | 结束 | |
时间 | |||
小莉的步数 | 1308 | 3183 | 8808 |
出发 | 途中 | 结束 | |
时间 | |||
爸爸的步数 | 2168 | 4168 |
(1)表格中表示的结束时间为 , ;
(2)小莉和她爸爸两人每步分别跑多少米?
(3)渡江胜利纪念馆到绿博园的路程是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,梯形ABCD中, AD// BC, ∠B=90°, AD=2, BC=5,E是AB上一点,将△BCE沿着直线CE翻折,点B恰好与点D重合,则BE=__
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.点在轴负半轴上,,,,是射线上的点,连接,以为边作等边,点在直线的上方,则下列结论正确的是( )
A. 随的增大而减小B. 随的增大而增大
C. 随的增大而减小D. 随的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备利用今年暑假将旧教学楼进行装修,并要在规定的时间内完成以保证秋季按时开学.现有甲、乙两个工程队,若甲工程队单独做正好可按期完成, 但费用较高;若乙工程队单独做则要延期 4 天才能完成,但费用较低.学校经过预 算,发现先由两队合作 3 天,再由乙队独做,正好可按期完成,且费用也比较合理. 请你算一算,规定完成的时间是多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com