【题目】小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
【答案】
(1)
解:过点A作AE⊥CB于点E,设AE=x,
在Rt△ACE中,∠C=30°,
∴CE= x,
在Rt△ADE中,∠ADE=45°,
∴DE=AE=x,
∴CE﹣DE=10,即 x﹣x=10,
解得:x=5( +1),
∴AD= x=5 +5
答:AD的长为(5 +5 )米
(2)
解:由(1)可得AC=2AE=(10 +10)米,
过点B作BF⊥AC于点F,
∵∠1=75°,∠C=30°,
∴∠CAB=45°,
设BF=y,
在Rt△CBF中,CF= BF= y,
在Rt△BFA中,AF=BF=y,
∴ y+y=(10 +10),
解得:y=10,
在Rt△ABF中,AB= =10 米.
答:树高AB的长度为10 米.
【解析】(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
【考点精析】利用关于仰角俯角问题对题目进行判断即可得到答案,需要熟知仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
科目:初中数学 来源: 题型:
【题目】如图,点D双曲线上,AD垂直x轴,垂足为A,点C在AD上,CB平行于x轴交曲线于点B,直线AB与y轴交于点F,已知AC:AD=1:3,点C的坐标为(2,2).
(1)求该双曲线的解析式;
(2)求△OFA的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已A为顶点的等腰△ABC中,∠ABC、∠ACB的平分线相交于点D,过点D作EF∥BC分别交AB、AC于E、F.
(1)求证:BE=DE;
(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为提高学生身体素质,决定开展足球、篮球、台球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)
(1)这次活动一共调查了多少名学生?
(2)补全条形统计图.
(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D,若D为OB的中点,△AOD的面积为3,则k的值为.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,BD,CE分别是∠ABC,∠ACB平分线,BD,CE相交于点P.
(1)如图1,如果∠A=60°,∠ACB=90°,则∠BPC= ;
(2)如图2,如果∠A=60°,∠ACB不是直角,请问在(1)中所得的结论是否仍然成立?若成立,请证明:若不成立,请说明理由.
(3)小月同学在完成(2)之后,发现CD、BE、BC三者之间存在着一定的数量关系,于是她在边CB上截取了CF=CD,连接PF,可证△CDP≌△CFP,请你写出小月同学发现,并完成她的说理过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com