精英家教网 > 初中数学 > 题目详情

【题目】如图,将RtABC绕直角顶点B逆时针旋转90°得到△DBEDE的延长线恰好经过AC的中点F,连接ADCE

1)求证:AECE

2)若BC,求AB的长.

【答案】1)见解析;(2AB2+.

【解析】

1)由旋转的性质可得∠BAC=CDF,可证DF垂直平分AC,可得AE=CE

2)由全等三角形的性质可得BE=CE=,由勾股定理可求CE=AE=2,即可求AB的长.

1)∵将RtABC绕直角顶点B逆时针旋转90°得到DBE

∴△ABC≌△DBE

∴∠BAC=∠CDF

∵∠BAC+ACB90°

∴∠CDF+ACB90°

DFAC,且点FAC中点,

DF垂直平分AC

AECE

2)∵△ABC≌△DBE

BECE

CEAE2

ABAE+BE2+.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值( )

A.y<0
B.0<y<m
C.y>m
D.y=m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,若有一动点出发,沿匀速运动,则的长度与时间之间的关系用图像表示大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有A,B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).

(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;
(2)计算点P在函数y= 图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/秒;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/秒,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).

(1)当t为何值时,四边形PQCM是平行四边形?
(2)设四边形PQCM的面积为y(cm2),求y与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)平面直角坐标系中,点Pxy)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点Pxy)的横坐标与纵坐标的绝对值之和叫做点Pxy)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+”是四则运算中的加法),例如点P12)的勾股值[P]=|1|+|2|=3

1)求点A, )的勾股值[A]

2)若将点A向上平移3个单位,再向左平移2个单位后得到点B,请直接写出点B的坐标,并求出点B的勾股值 [B]

3)若点Mx轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】菱形ABCD中,∠B60°,AB4,点EBC上,CE2,若点P是菱形上异于点E的另一点,CECP,则EP的长为_____

查看答案和解析>>

同步练习册答案