【题目】如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=( )
A.
B.
C.
D.
【答案】B
【解析】解:∵BC=12,点E是BC的中点,
∴EC=BE=6,
由翻折变换的性质可知,BE=FE,∠BEA=∠FEA,
∴EF=EC,
∴∠EFC=∠ECF,
∵∠BEA+∠FEA=∠EFC+∠ECF,
∴∠BEA=∠ECF,
∵tan∠BEA= = ,
∴tan∠ECF= ,
所以答案是:B.
【考点精析】解答此题的关键在于理解三角形的外角的相关知识,掌握三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角,以及对翻折变换(折叠问题)的理解,了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
科目:初中数学 来源: 题型:
【题目】如图,数轴上点表示的数为6,点位于点的左侧,,动点从点出发,以每秒3个单位长度的速度沿数轴向左运动,动点从点出发,以每秒2个单位长度的速度沿数轴向右运动.
(1)点表示的数是多少?
(2)若点,同时出发,求:
①当点与相遇时,它们运动了多少秒?相遇点对应的数是多少?
②当个单位长度时,它们运动了多少秒?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为、宽为的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)
(1)观察图2请你写出之间的等量关系是________;
(2)根据(1)中的结论,若,则________;
(3)拓展应用:若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.
(1)求证:AE=CE;
(2)若BC=,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平面直角坐标系中,的顶点坐标分别,现将先向右平移6个单位长度,再向下平移5个单位长度,得到.
(1)直接写出点的坐标;
(2)在平面直角坐标中画出,并求出的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知平面直角坐标系中,A点坐标为(﹣4,4),B(﹣4,0)C(1,3),解答下列各题:
(1)按题中所给坐标在图中画出△ABC并直接写出△ABC的面积;
(2)画出△ABC先向右平移5个单位长度再向下平移3个单位长度的△A'B'C',并直接写出A',B′,C'的坐标;
(3)直接写出△ABC按照(2)问要求平移到△A'B'C'的过程中,△ABC所扫过的图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,等腰和等腰中,,,,三点在同一直线上,求证:;
(2)如图2,等腰中,,,是三角形外一点,且,求证:;
(3)如图3,等边中,是形外一点,且,
①的度数为 ;
②,,之间的关系是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com