精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为( )

A.2
B.4
C.2
D.4

【答案】D
【解析】解:∵点A、B在反比例函数y= 的图象上,且A,B两点的纵坐标分别为3、1,

∴点A(1,3),点B(3,1),

∴AB= =2

∵四边形ABCD为菱形,BC与x轴平行,

∴BC=AB=2

∴S菱形ABCD=BC(yA﹣yB)=2 ×(3﹣1)=4

所以答案是:D.

【考点精析】掌握菱形的性质是解答本题的根本,需要知道菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】南通某校为了了解家长和学生参与南通安全教育平台“防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下类情形:

A.仅学生自己参与;

B.家长和学生一起参与;

C.仅家长参与;

D.家长和学生都未参与

请根据上图中提供的信息,解答下列问题:

1)在这次抽样调查中,共调查了多少名学生?

2)补全条形统计图,并在扇形统计图中计算类所对应扇形的圆心角的度数;

3)根据抽样调查结果,估计该校名学生中“家长和学生都未参与”的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/秒;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/秒,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).

(1)当t为何值时,四边形PQCM是平行四边形?
(2)设四边形PQCM的面积为y(cm2),求y与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筐白菜,以每筐千克为标准,超过或不足的分别用正、负来表示,记录如下:

与标准质量的差单位:千克

筐 数

(1)与标准质量比较,筐白菜总计超过或不足多少千克?

(2)若白菜每千克售价元,则出售这筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)平面直角坐标系中,点Pxy)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点Pxy)的横坐标与纵坐标的绝对值之和叫做点Pxy)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+”是四则运算中的加法),例如点P12)的勾股值[P]=|1|+|2|=3

1)求点A, )的勾股值[A]

2)若将点A向上平移3个单位,再向左平移2个单位后得到点B,请直接写出点B的坐标,并求出点B的勾股值 [B]

3)若点Mx轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,E为边长为1的正方形ABCD中CD边上的一动点(不含点C、D),以BE为边作图中所示的正方形BEFG.

(1)求∠ADF的度数;
(2)如图2,若BF交AD于点H,连接EH,求证:HB平分∠AHE;

(3)如图3,连接AE、CG,作BM⊥AE于点M,BM交GC于点N,连接DN.当E在CD上运动时,求证:NC=NG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC,CD交于点M、N.
(1)如图1,若点O与点A重合,则OM与ON的数量关系是

(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;

(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?

(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)

查看答案和解析>>

同步练习册答案