【题目】“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是多少米;
(2)小明在书店停留了多少分钟;
(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
【答案】(1)1500米;(2)4分钟; (3)2700米;共用14分钟.
【解析】
(1)根据函数图象的纵坐标,可得答案;
(2)根据函数图象的横坐标,可得到达书店时间,离开书店时间,根据有理数的减法,即可求出答案;
(3)根据函数图象的纵坐标,可得相应的路程,根据有理数的加法,可得答案;
(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,
故小明家到学校的路程是1500米;
(2)根据题意,小明在书店停留的时间为从(8分)到(12分),
故小明在书店停留了4分钟.
(3)一共行驶的总路程=1200+(1200600)+(1500600)=1200+600+900=2700米;
共用了14分钟.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的高,CE是△ABC的中线.
(1)若AD=12,BD=16,求DE;
(2)已知点F是中线CE的中点,连接DF,若∠AEC=57°,∠DFE=90°,求∠BCE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=5,BC=8,AC=7,动点P、Q分别在边AB、AC上,使△APQ的外接圆与BC相切,则线段PQ的最小值等于_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与轴交于A、B两点(点A在点B的左侧),点B的坐标为(3,0),与轴交于点C(0,-3),顶点为D.
(1)求抛物线的解析式及顶点D的坐标.
(2)联结AC,BC,求∠ACB的正切值.
(3)点P是x轴上一点,是否存在点P使得△PBD与△CAB相似,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)M是抛物线上一点,点N在轴,是否存在点N,使得以点A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图(2)所示,当P运动到BC中点时,△PAD的面积为( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,排球运动员站在点处练习发球,将球从点正上方的处发出,把球看成点,其运行的高度与运行的水平距离满足关系式.已知球网与点的水平距离为,高度为,球场的边界距点的水平距离为.
()求与的关系式(不要求写出自变量的取值范围).
()球能否越过球网?球会不会出界?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于任意三点,,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行或共线,且,,三点都在矩形的内部或边界上,那么称该矩形为点,,的外延矩形,在点,,所有的外延矩形中,面积最小的矩形称为点,,的最佳外延矩形.例如,图中的矩形,,都是点,,的外延矩形,矩形是点,,的最佳外延矩形.
()如图,点,,(为整数).
①如果,则点,,的最佳外延矩形的面积是__________.
②如果点,,的最佳外延矩形的面积是,且使点在最佳外延矩形的一边上,请写出一个符合题意的值__________.
()如图,已知点在函数的图象上,且点的坐标为,求点,,的最佳外延矩形的面积的取值范围以及该面积最小时的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤图中的等腰三角形有5个。其中正确的结论是___.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com