【题目】抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.
(1)如图1,若P(1,﹣3),B(4,0).
①求该抛物线的解析式;
②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.
【答案】
(1)
解:①将P(1,﹣3),B(4,0)代入y=ax2+c,得
,解得 ,
抛物线的解析式为y= x2﹣ ;
②如图1
,
由∠DPO=∠POB,得
DP∥OB,
D与P关于y轴对称,P(1,﹣3),
得D(﹣1,﹣3);
(2)
解:点P运动时, 是定值,
设P点坐标为(m, m2﹣ ),A(﹣4,0),B(4,0),
设AP的解析式为y=kx+b,将A、P点坐标代入,得
,
解得b= ,即E(0, ),
设BP的解析式为y=k1x+b1,将B、P点坐标代入,得
,
解得b2= ,即F(0, ),
OF+OE= + = = ,
= =2.
【解析】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键.(1)①根据待定系数法求函数解析式,可得答案;②根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D点坐标;(2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案.
科目:初中数学 来源: 题型:
【题目】如图,已知C是线段AB的中点,D是线段BC的中点,E是线段AD的中点,F是线段AE的中点,那么线段AF与线段AC的长度比为( )
A. 1∶8 B. 1∶4 C. 3∶8 D. 3∶16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S甲2= ,平均成绩 =8.5.
(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
S2= [(x1﹣ )2+(x2﹣ )2…(xn﹣ )2].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某车间20名工人日加工零件数如表所示:
日加工零件数 | 4 | 5 | 6 | 7 | 8 |
人数 | 2 | 6 | 5 | 4 | 3 |
这些工人日加工零件数的众数、中位数、平均数分别是( )
A.5、6、5
B.5、5、6
C.6、5、6
D.5、6、6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:
(1)试验观察:
如果经过两点画直线,那么:
第①组最多可以画____条直线;
第②组最多可以画____条直线;
第③组最多可以画____条直线.
(2)探索归纳:
如果平面上有n(n≥3)个点,且任意3个点均不在1条直线上,那么经过两点最多可以画____条直线.(用含n的式子表示)
(3)解决问题:
某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握____次手.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB= ,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.
(1)求该抛物线的解析式;
(2)连接PB、PC,求△PBC的面积;
(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.
(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.
①求证:△AGE≌△AFE;
②若BE=2,DF=3,求AH的长.
(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心5cm为半径的圆与直线AB的位置关系是( )
A.相交
B.相切
C.相离
D.无法确定
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com