精英家教网 > 初中数学 > 题目详情

【题目】如图,以RtABC的直角边AB为直径作⊙O交斜边AC于点D,过圆心OOEAC,交BC于点E,连接DE

(1)判断DE与⊙O的位置关系并说明理由;

(2)求证:2DE2=CDOE

(3)若tanC=DE=,求AD的长.

【答案】(1)DE是⊙O的切线,理由见解析;(2)证明见解析;(3)

【解析】(1)先判断出DE=BE=CE,得出∠DBE=BDE,进而判断出∠ODE=90°,即可得出结论;

(2)先判断出BCD∽△ACB,得出BC2=CDAC,再判断出DE=BC,AC=2OE,即可得出结论;

(3)先求出BC,进而求出BD,CD,再借助(2)的结论求出AC,即可得出结论.

1)DE是⊙O的切线,理由:如图,

连接OD,BD,AB是⊙O的直径,

∴∠ADB=BDC=90°,

OEAC,OA=OB,

BE=CE,

DE=BE=CE,

∴∠DBE=BDE,

OB=OD,

∴∠OBD=ODB,

∴∠ODE=OBE=90°,

∵点D在⊙O上,

DE是⊙O的切线;

(2)∵∠BCD=ABC=90°,C=C,

∴△BCD∽△ACB,

BC2=CDAC,

由(1)知DE=BE=CE=BC,

4DE2=CDAC,

由(1)知,OEABC是中位线,

AC=2OE,

4DE2=CD2OE,

2DE2=CDOE;

(3)DE=

BC=5,

RtBCD中,tanC=

CD=3x,BD=4x,根据勾股定理得,(3x)2+(4x)2=25,

x=-1(舍)或x=1,

BD=4,CD=3,

由(2)知,BC2=CDAC,

AC=

AD=AC-CD=-3=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是(  )

A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,∠BAC=90°,∠1=∠2,CEBE.求证:BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 6个相同的小正方体摆成如图的几何体.

1)画出该几何体的主视图、左视图、俯视图;

2)如果每个小正方体棱长为,则该几何体的表面积是

3)如果在这个几何体上再添加一些相同的小正方体,并并保持左视图和俯视图不变,那么最多可以再 添加 个小正方体.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点BC重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE

(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;

(2)设∠BAC= ,∠DCE=

① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究之间的数量关系,并证明你的结论;

② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时之间的数量关系(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于三个数abc,用M{abc}表示这三个数的中位数,用max{abc}表示这三个数中最大数,例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=

解决问题:

(1)填空:M{sin45°,cos60°,tan60°}=__________,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为__________;

(2)如果2M{2,x+2,x+4}=max{2,x+2,x+4},求x的值;

(3)如果M{9,x2,3x﹣2}=max{9,x2,3x﹣2},求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知AB=8cmBC=10cm,折叠矩形的一边AD,使点D落在BC边上的点F处,折痕为AE.以点A为原点,分别以AD所在的直线为x轴,AB所在的直线为y轴建立坐标系.

1)写出点BDEF的坐标;

2)在坐标轴上是否存在点G,使△AFG是以AF为腰长的等腰三角形?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题.

1

2

32002-202×198

4

5[2x+y2yy+4x)﹣8xy]÷(﹣2x).其中x=-2y=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为:A-12),B-2-1),C20.

1)作图:将△ABC先向右平移4个单位,再向上平移3个单位,则得到△A1B1C1,作出△A1B1C1;(不要求写作法)

2)写出下列点的坐标:A1______B1______C1______.

3)求△ABC的面积.

查看答案和解析>>

同步练习册答案