【题目】材料阅读:对于一个圆和一个正方形给出如下定义:若圆上存在到此正方形四条边距离都相等的点,则称这个圆是该正方形的“等距圆”.
如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=2时,在P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)中可以成为正方形ABCD的“等距圆”的圆心的是 ;
(2)若点P坐标为(﹣2,﹣1),则当⊙P的半径r= 时,⊙P是正方形ABCD的“等距圆”.试判断此时⊙P与直线BD的位置关系?并说明理由.
(3)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(8,2),顶点E、H在y轴上,且点H在点E的上方.若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P的圆心P的坐标.
【答案】(1) P1(2,0),P2(﹣2,4)或P4(0,2﹣2);(2) 相交;(3) (,)或(,).
【解析】分析:(1)根据“等距圆”的定义,可知只要圆经过正方形的中心,即是正方形的“等距圆”,也就是说圆心与正方形中心的距离等于圆的半径即可,从而可以判断哪个点可以成为正方形ABCD的“等距圆”的圆心,本题得以解决;
(2)根据题意可知,只要求出点P与正方形ABCD的中心的距离即可求得半径r的长度,连接PE,可以得到直线PE的解析式,看点B是否在此直线上,由BE与直线AC的关心可以判断PE与直线AC的关系,本题得以解决;
(3)根据题意,可以得到点P满足的条件,列出形应的二元一次方程组,从而可以求得点P的坐标.
详解:(1)连接AC、BD相交于点M,如右图1所示.
∵四边形ABCD是正方形,∴点M是正方形ABCD的中心,到四边的距离相等,∴⊙P一定过点M.
∵正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧,∴点M(0,2),设⊙P的圆心坐标是(x,y),∴(x﹣0)2+(y﹣2)2=(2 )2,将P1(2,0),P2(﹣4,2),P3(2,2),P4(2﹣2,0)分别代入上面的方程,只有P1(2,0),P2(﹣2,4)和P4(0,2﹣2)成立.
故答案为:P1(2,0),P2(﹣2,4)或P4(0,2﹣2);
(2)由题意可得: 点M的坐标为(0,2),点P(﹣2,﹣1),∴r==,即当P点坐标为(﹣2,﹣1),则当⊙P的半径r是时,⊙P是正方形ABCD的“等距圆”;
故答案为:.
此时⊙P与直线AC的位置关系是相交,理由:∵正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧,∴点B(﹣2,4),D(2,0),设过点B(﹣2,4),点D(2,0)的直线的解析式为y=kx+b,则 ,解得:,即直线AC的解析式为:y=﹣x+2①,∴过点P(﹣2,﹣1)垂直于BD的直线解析式为y=x+1②,记垂足为G,联立①②,解得:G的坐标为(),∴PG=
∴点P(﹣2,﹣1)到直线BD的距离为:<;
∴此时⊙P与直线AC的位置关系是相交;
(3)设点P的坐标为(x,y),连接HF、EG交于点N,则点N为正方形EFGH的中心,其坐标为(4,6)如图2所示.
∵点E(0,2),N(4,6),点C(﹣2,0),点B(﹣2,4),⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,∴,
解得:或
即⊙P的圆心P的坐标是(,)或(,).
科目:初中数学 来源: 题型:
【题目】哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.
(1)求该车队有载重量8吨、10吨的卡车各多少辆?
(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=100°,∠DBC=80°.
(1)求证:BD=CD;
(2)若圆O的半径为9,求的长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1和图2,半圆O的直径AB=4,点P(不与点A,B重合)为半圆上一点,将图形沿着BP折叠,分别得到点A,O的对称点A′,O′,设∠ABP=α.
(1)如图1,当α=22.5°时,过点A′作A′C∥AB,判断A′C与半圆O的位置关系,并说明理由.
(2)如图2,当α= 时,点O′落在上.当α= 时,BA′与半圆O相切.
(3)当线段B O′与半圆O只有一个公共点B时,α的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地为了解青少年实力情况,现随机抽查了若干名初中学生进行视力情况统计,分为视力正常、轻度近视、重度近视三种情况,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:
(1)求这次被抽查的学生一共有多少人?
(2)求被抽查的学生中轻度近视的学生人数,并将条形统计图补充完整;
(3)若某地有万名初中生,请估计视力不正常(包括轻度近视、重度近视)的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的顶点为B(1,﹣3),与x轴的一个交点A在(2,0)和(3,0)之间,下列结论中:①bc>0;②2a+b=0;③a﹣b+c>0;④a﹣c=3,正确的有( )个
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合).BC,BD别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)求∠ABN、∠CBD的度数;根据下列求解过程填空.
解:∵AM∥BN,
∴∠ABN+∠A=180°
∵∠A=60°,
∴∠ABN= ,
∴∠ABP+∠PBN=120°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP、∠PBN= ,( )
∴2∠CBP+2∠DBP=120°,
∴∠CBD=∠CBP+∠DBP= .
(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使∠ACB=∠ABD时,直接写出∠ABC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com