【题目】随着人们环保意识的不断增强,延安市家庭电动自行车的拥有量逐年增加.据统计,某小区2016年底拥有家庭电动自行车125辆,2018年底家庭电动自行车的拥有量达到180辆.若该小区2016年底到2018年底家庭电动自行车拥有量的平均增长率相同且均为x,则可列方程为( )
A.125=180B.=180
C.125(1+x)(1+2x)=180D.125=180
科目:初中数学 来源: 题型:
【题目】某校在七年级、八年级开展了阅读文学名著知识竞赛.该校七、八年级各有学生400人,各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(单位:分),并对数据进行整理、描述和分析.下面给出了部分信息.
a.七年级学生知识竞赛成绩的平均数、中位数、众数、优秀率(80分及以上)如下表所示:
年级 | 平均数 | 中位数 | 众数 | 优秀率 |
七年级 | 84. 2 | 77 | 74 | 45﹪ |
b.八年级学生知识竞赛成绩的扇形统计图如下(数据分为5组,A:50≤x≤59; B:60≤x≤69;C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)
c.八年级学生知识竞赛成绩在D组的是:87 88 88 88 89 89 89 89
根据以上信息,回答下列问题:
(1)八年级学生知识竞赛成绩的中位数是 分;
(2)请你估计该校七、八年级所有学生中达到“优秀”的有多少人?
(3)下列结论:①八年级成绩的众数是89分;②八年级成绩的平均数可能为86分;③八年级成绩的极差可能为50分.其中所有正确结论的序号是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】
如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当时,求线段的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(定义学习)
定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”.
(判断尝试)
在A.矩形;B.菱形;C.正方形中;一定是“对直四边形”的是______.(填字母序号)
(操作探究)
在菱形ABCD中,AB=2,∠B=60°,AE⊥BC于点E,请用尺规作图法在边AD和CD上各找一点F,使得由点A、E、C、F组成的四边形为“对直四边形”,连接EF,并直接写出EF的长.(保留作图痕迹,不写作法)
(1)当点F在边AD上时.
(2)当点F在边CD上时.
(实践应用)
某加工厂有一批四边形板材,形状如图所示,已知AB=3米,AD=1米,∠C=45°,∠A=∠B=90°.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形”板材,且这两个等腰三角形的腰长相等,要求充分利用材料且无剩余,求分割后得到的等腰三角形的腰长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A和点B都是反比例函数在第一象限内图象上的点,点A的横坐标为1,点B的纵坐标为1,连接AB,以线段AB为边的矩形ABCD的顶点D,C恰好分别落在x轴,y轴的负半轴上,连接AC,BD交于点E,若的面积为6,则k的值为( )
A.2B.3C.6D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题提出)我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半.那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系?
(初步思考)(1)如图,是的弦,,点、分别是优弧和劣弧上的点,则______°._______°.
(2)如图,是的弦,圆心角,点P是上不与A、B重合的一点,求弦所对的圆周角的度数(用m的代数式表示).
(问题解决)(3)如图,已知线段,点C在所在直线的上方,且.用尺规作图的方法作出满足条件的点C所组成的图形(不写作法,保留作图痕迹).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com