【题目】(定义学习)
定义:如果四边形有一组对角为直角,那么我们称这样的四边形为“对直四边形”.
(判断尝试)
在A.矩形;B.菱形;C.正方形中;一定是“对直四边形”的是______.(填字母序号)
(操作探究)
在菱形ABCD中,AB=2,∠B=60°,AE⊥BC于点E,请用尺规作图法在边AD和CD上各找一点F,使得由点A、E、C、F组成的四边形为“对直四边形”,连接EF,并直接写出EF的长.(保留作图痕迹,不写作法)
(1)当点F在边AD上时.
(2)当点F在边CD上时.
(实践应用)
某加工厂有一批四边形板材,形状如图所示,已知AB=3米,AD=1米,∠C=45°,∠A=∠B=90°.现根据客户要求,需将每张四边形板材进一步分割成两个等腰三角形板材和一个“对直四边形”板材,且这两个等腰三角形的腰长相等,要求充分利用材料且无剩余,求分割后得到的等腰三角形的腰长.
【答案】【判断尝试】A,C;【操作探究】(1)图见解析,EF=2;(2)图见解析,EF=;【实践应用】等腰三角形的腰长为米或2米.
【解析】
判断尝试:直接根据“对直四边形”定义可得:矩形和正方形是“对直四边形”;
操作探究:
(1)F在边AD上时,如图1,作CF⊥AD,得矩形AECF,根据勾股定理可得EF的长;
(2)F在边CD上时,如图2,作AF⊥CD,证明△AEF是等边三角形,可得EF的长;
实践应用:
存在两种情况:①如图3,矩形ABED,F是DC的中点,②如图4,∠A=∠BFD=90°,E是BC的中点,根据直角三角形斜边中线等于斜边一半可得结论.
解:【判断尝试】∵矩形的四个内角都是直角,正方形的四个内角都是直角,
∴矩形和正方形的对角为直角,为“对直四边形”
故填:A,C.
操作探究:
(1)当点F在边AD上时,如图1,
由题意可得∠AEC=∠AFC=90°,
在Rt△ABE中,∠B=60°,
∴∠BAE=30°.
∵AB=BC=2,
∴BE=1,
∴CE=2-1=1.
∵AD∥BC,AE⊥BC,CF⊥AD,
∴AE=CF==,
∴EF==2.
(2)当点F在边CD上时,如图2,
由题意可得AF⊥CD.
∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D=60°.
∵∠AEB=∠AFD=90°,
∴△ABE≌△ADF(AAS),
∴AE=AF.
∵∠BAE=∠DAF=30°,
∴∠EAF=120°-30°-30°=60°,
∴△AEF是等边三角形,
∴EF=AE=.
实践应用:
①如图3,在矩形ABED中,F是DC的中点,
在Rt△DEC中,∠C=45°,
∴△DEC是等腰直角三角形,
且DE=EC=3,
∴DC=3,
∴DF=CF=EF=,即此时分割后得到的等腰三角形的腰长为米;
②如图4,∠A=∠BFD=90°,E是BC的中点,
同理得△BFC是等腰直角三角形.
∵BC=4,
∴EF=BE=CE=2,即此时分割后得到的等腰三角形的腰长为2米.
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一.部分,且过点(-3,0),(1,0),下列说法错误的是( )
A.2a-b=0
B.4a-2b十c<0.
C.若(-4,y1),( ,y2)是抛物线上两点,则y1> y2
D.y <0时,-3<x < 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+bx+c,函数值y与自变量x之间的部分对应值如下表:
x | … | ﹣4 | ﹣1 | 0 | 1 | … |
y | … | ﹣2 | ﹣1 | ﹣2 | ﹣7 | … |
(1)此二次函数图象的对称轴是直线,此函数图象与x轴交点个数为 .
(2)求二次函数的函数表达式;
(3)当﹣5<x<﹣1时,请直接写出函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年女排世界杯中,中国女排以11站全胜且只丢3局的成绩成功卫冕本届世界杯冠军.某校七年级为了弘扬女排精神,组建了排球社团,通过测量同学们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:样本容量为___,a=___;
(2)把频数分布直方图补充完整;
(3)若从该组随机抽取1名学生,估计这名学生身高低于165cm的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人们环保意识的不断增强,延安市家庭电动自行车的拥有量逐年增加.据统计,某小区2016年底拥有家庭电动自行车125辆,2018年底家庭电动自行车的拥有量达到180辆.若该小区2016年底到2018年底家庭电动自行车拥有量的平均增长率相同且均为x,则可列方程为( )
A.125=180B.=180
C.125(1+x)(1+2x)=180D.125=180
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=a,AD=b,点P是对角线BD上的一个动点(点P不与B、D重合),连接AP并延长交射线BC于点Q,
(1)当AP⊥BD时,求△ABQ的面积(用含a、b的代数式表示).
(2)若点M为AD边的中点,连接MP交BC于点N,证明:点N也为线段BQ的中点.
(3)如图,当为何值时,△ADP与△BPQ的面积之和最小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山,就是金山银山”,为了改善生态环境,某县政府准备对境内河流进行清淤、疏通河道,同时在人群密集区沿河流修建滨河步道,打造生态湿地公园.
(1)2018年11月至12月,一期工程原计划疏通河道和修建滨河步道里程数共计20千米,其中修建滨河步道里程数是疏通河道里程数的倍,那么,原计划修建滨河步道多少千米?
(2)至2018年12月底,一期工程顺利按原计划完成总共耗资840万元,其中疏通河道工程共耗资600万元;2019年二期工程开工后,疏通河道每千米工程费用较一期降低2.5a%,里程数较一期增加3a%;修建滨河步道每千米工程费用较一期上涨2.5a%,里程数较一期增加5a%,经测算,二期工程总费用将比一期增加2a%,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.
(1)求出y与x的函数关系式,并写出自变量x的取值范围.
(2)当销售单价为多少元时,销售这种童装每月可获利1800元?
(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com