精英家教网 > 初中数学 > 题目详情

【题目】如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧长为 . (结果保留π)

【答案】 π
【解析】解:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,OA=2,∠OAB=30°,
∴OB=1,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,
则劣弧 长为 = π.
故答案为: π
连接OB,OC,由AB为圆的切线,利用切线的性质得到三角形AOB为直角三角形,根据30度所对的直角边等于斜边的一半,由OA求出OB的长,且∠AOB为60度,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC为60度,又OB=OC,得到三角形BOC为等边三角形,确定出∠BOC为60度,利用弧长公式即可求出劣弧BC的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】等腰三角形中,两腰和底的长分别是10和13,求三角形的三个内角的度数(精确到1′)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。

(1)t为何值时,CP把△ABC的周长分成相等的两部分。

(2)t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;

(3)t为何值时,△BCP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是(
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是(
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形EFGH是由矩形ABCD的外角平分线围成的. 求证:四边形EFGH是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算: ﹣( 1+(2﹣ 0
(2)解方程:x2﹣4x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标;
(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步练习册答案