【题目】如图,边长为的正方形
中,
为
的中点,连接
交
于
,连接
,过
作
交
的延长线于
,则
的长为________.
【答案】
【解析】
作MN⊥AD,先证明MA=ME,进而求出AN=NE=1,利用MN∥CD得: ,
求出MN,在RT△MND中利用勾股定理即可求出DM.
作MN⊥AD垂足为N.
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,
∵BF=BF,
∴△BFA≌△BFC,
∴∠BAF=∠BCF=∠CED=∠AEM,
∵∠MAF=∠BAD=90°,
∴∠BAF=∠MAE,
∴∠MAE=∠AEM,
∴MA=ME
∵AE=ED=AD=2,
∴AN=NE=AE=1,
∵∠MNE=∠CDE=90°,
∴MN∥CD,
∴△MNE∽△CDE,
∴=
,
∵CD=4,
∴MN=2,
在RT△MND中,∵MN=2,DN=3,
∴DM= =
=
,
故答案为:
科目:初中数学 来源: 题型:
【题目】平行四边形 ABCD 中,两条邻边长分别为3和5,∠BAD与∠ABC的平分线交于点E,点F 是CD的中点,连接EF,则EF=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以
边
和
为边作等边
和
,连接
,
,
判断
与
的数量关系,并求
与
的夹角
的度数;
继续探索,如图
,以
的
和
为边作正方形
和
,连接
、
,判断
和
的数量关系,并求出此时
与
的夹角;
如图
中
、
分别是
、
的中点,
、
分别是正方形的中心,顺次连接
,判断四边形
的形状并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.(售价不低于进价).请根据小丽提供的信息,解答小华和小明提出的问题.
认真阅读上面三位同学的对话,请根据小丽提供的信息.
(1)解答小华的问题;
(2)解答小明的问题.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com