精英家教网 > 初中数学 > 题目详情

【题目】今年,在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.(售价不低于进价).请根据小丽提供的信息,解答小华和小明提出的问题.

认真阅读上面三位同学的对话,请根据小丽提供的信息.

(1)解答小华的问题;

(2)解答小明的问题.

【答案】(1)当定价为4元时,能实现每天800元的销售利润;

(2)800元不是最大利润,当售价为每个4.8元时,利润最大为896元.

【解析】

试题分析:(1)设定价为x元,利润为y元,根据利润=(定价﹣进价)×销售量,列出函数关系式,结合x的取值范围,求出当y取800时,定价x的值即可;

(2)根据(1)中求出的函数解析式,运用配方法求最大值,并求此时x的值即可

试题解析:(1)设定价为x元,根据题意得:

(x-2)(500-)=800

解得x1=4 x2=6

售价不能超过进价的240%

x≤2×240% 即x≤4.8

x=4;

答:当定价为4元时,能实现每天800元的销售利润.

(2)设利润为y元

则y=(x-2)(500-)

=-10(x-5)2900

由(1)知:2≤x≤4.8

由二次函数的性质知,当2≤x≤4.8时,y随x的增大而增大

当x=4.8时,y最大=896元

答:800元不是最大利润,当售价为每个4.8元时,利润最大为896元

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,若直线轴于点、交轴于点,将绕点逆时针旋转得到.过点的抛物线

求抛物线的表达式;

若与轴平行的直线秒钟一个单位长的速度从轴向左平移,交线段于点、交抛物线于点,求线段的最大值;

如图,点为抛物线的顶点,点是抛物线在第二象限的上一动点(不与点重合),连接,以为边作图示一侧的正方形.随着点的运动,正方形的大小、位置也随之改变,当顶点恰好落在轴上时,直接写出对应的点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为的正方形中,的中点,连接,连接,过的延长线于,则的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).

(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1

(2)画出与△A1B1C1关于y轴对称的△A2B2C2

(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为   

(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A的坐标为(﹣66),以A为顶点的∠BAC的两边始终与x轴交于BC两点(BC左面),且∠BAC45°.

1)如图,连接OA,当ABAC时,试说明:OAOB

2)过点AADx轴,垂足为D,当DC2时,将∠BAC沿AC所在直线翻折,翻折后边ABy轴于点M,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的长方形中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)计算△ABC的面积;

3)在直线l上找一点P,使PB+PC的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为,顶点距水面,小孔顶点距水面.当水位上涨刚好淹没小孔时,大孔的水面宽度为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.

(1)若∠D=60°,CF=2,求CG的长度;

(2)求证:AB=ED+CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系xOy,A23,B30,Cmn)其中m>0,若以OABC为顶点的四边形是平行四边形,则点C的坐标为_____.

查看答案和解析>>

同步练习册答案