【题目】为了保护环境,某集团决定购买、两种型号的污水处理设备共10台,其中每台价格及月处理污水量如下表:
价格(万元/元) | 15 | 12 |
处理污水量(吨/月) | 250 | 220 |
经预算,该集团准备购买设备的资金不高于130万元.
(1)请你设计该企业有哪几种购买方案?
(2)试通过计算,说明哪种方案处理污水多?
【答案】(1)共有三中方案,见解析;(2)见解析.
【解析】
(1)根据总费用不高于130万元列出关系式求得正整数解即可;
(2)得到处理污水的吨数的函数关系式,比较即可.
解:(1)设购买A种型号设备x台,则B种型号设备为()台。
由题意列不等式为:
解得x≤
因为x为正整数,所以x应取1,2,3
即共有三中方案,分别为:
方案1:该集团购买A种型号设备1台,B种型号设备9台;
方案2:该集团购买A种型号设备2台,B种型号设备8台;
方案3:该集团购买A种型号设备3台,B种型号设备7台.
(2)处理吨数W=250x+220(10-x)=30x+2200,
∴x=3时,处理污水吨数最多,
答:购买A种型号的3台,B种型号的7台,处理污水吨数最多.
科目:初中数学 来源: 题型:
【题目】如图,完成下列推理过程:
如图所示,点E在外部,点D在BC边上,DE交AC于F,若,,
求证:.
证明:∵(已知),
(________________),
∴(________________),
又∵,
∴________________(________),
即,
在和中
(已证)
∵(已知)
(已证)
∴(________).
∴(________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).
(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;
(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大草原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°,B地北偏西60°方向上有一牧民区C,过点C作CH⊥AB于H.
(1)求牧民区C到B地的距离(结果用根式表示);
(2)一天,乙医疗队的医生要到牧民区C出诊,她先由B地搭车沿公路AB到D处(BD<AB)转车,再由D地沿DC方向到牧民区C.若C、D两地距离是B、C两地距离的倍,求B、D两地的距离.(结果精确到0.1千米 参考数据: ≈2.449, ≈1.732, ≈1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)m= ,n= ;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)请根据以上信息补全条形统计图;
(4)根据抽样调查的结果,请你估计该校1000名学生中有多少学生最喜欢科普类图书.
【答案】 (1)m=50, n=30;(2)72度 (3)补图见解析(4)300
【解析】试题分析:(1)根据其他的人数和所占的百分比即可求得m的值,从而可以求得n的值;
(2)根据扇形统计图中的数据可以求得“艺术”所对应的扇形的圆心角度数;
(3)根据题意可以求得喜爱文学的人数,从而可以将条形统计图补充完整;
(4)根据统计图中的数据可以估计该校600名学生中有多少学生最喜欢科普类图书.
试题解析:
解:(1)m=5÷10%=50,n%=15÷50=30%,
故答案为:50,30;
(2)由题意可得,
“艺术”所对应的扇形的圆心角度数是:360°×=72°,
故答案为:72;
(3)文学有:50-10-15-5=20,
补全的条形统计图如图所示;
(4)由题意可得,
600×=180,
即该校600名学生中有180名学生最喜欢科普类图书.
点睛:本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
【题型】解答题
【结束】
23
【题目】端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.5元,花35元购买粽子的个数与花20元购买咸鸭蛋的个数相同.粽子与咸鸭蛋的价格各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,∠ABC=32°,以点C为旋转中心顺时针旋转后得到△A′B′C,且点A在边A′B′上,则旋转角的度数为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市举行“非常时期,非常的爱”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中的值是_______,的值是_______;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.
(1)求点A、B、D的坐标;
(2)求直线BD的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.
(1)购买一个足球、一个篮球各需多少元?
(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com