【题目】已知抛物线y=mx2-(m+5)x+5.
(1)求证:它的图象与x轴必有交点,且过x轴上一定点;
(2)这条抛物线与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,过(1) 中定点的直线L;y=x+k交y轴于点D,且AB=4,圆心在直线L上的⊙M为A、B两点,求抛物线和直线的关系式,弦AB与弧围成的弓形面积.
【答案】(1)证明见解析;(2)
【解析】本题主要考查了二次函数与一元二次方程的联系、根的判别式、函数图象与坐标轴交点坐标的求法、函数解析式的确定、扇形面积的计算方法等
(1)若抛物线于x轴有交点,那么当y=0时,所得方程的根的判别式恒大于等于0,可据此进行证明;将抛物线解析式的右边,用十字相乘法进行因式分解,可得:y=(mx-5)(x-1),由此可看出抛物线一定经过点(1,0).
(2)由于抛物线交x轴于A、B两点,且A在B左侧,且A、B都在原点的右侧,因此A(1,0),B(5,0),根据A点坐标,可确定直线的解析式,根据A、B的坐标,可确定抛物线的解析式;
若⊙M同时经过A、B两点,根据抛物线和圆的对称性知:点M必为抛物线对称轴与直线的交点,由此可求得点M的坐标为(3,2),而AB=4,因此△ABM是个等腰直角三角形,即可得到的圆心角,那么扇形MAB的面积减去等腰直角三角形MAB的面积即为所求弓形的面积.
(1)证明:∵y=mx2-(m+5)x+5,∴△=[-(m+5)]2-4m×5=m2+10m+25-20m="(m-" 5)2.
不论m取任何实数,(m-5)2≥0,即△≥0,故抛物线与x轴必有交点.
又∵x轴上点的纵坐标均为零,∴令y=0,代入y=mx2-(m+5)x+5,得
mx2-(m+5)x+ 5=0,(mx-5)(x-1)=0,
∴x=或x=1.故抛物线必过x轴上定点(1,0).
(2)解:如答图所示,
∵L:y=x+k,把(1,0)代入上式,
得0=1+k,∴k=-1,∴y="x-1."
又∵抛物线与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2,AB=4,
∵x1x2>0,∴x1="1," x2=5,∴A(1,0),B(5,0),
把B(5,0)代入y=mx2-(m+5)x+5,得0=25m-(m+5)×5+5.
∴m=1,∴y=x2-6x+5.
∵M点既在直线L:y=x-1上,又在线段AB的垂直平分线上,
∴M点的横坐标x1+=1+.
把x=3代入y=x-1,得y=2.
∴圆心M(3,2),∴半径r=MA=MB=,
∴MA2=MB2=8.
又AB2=42= 16,∴MA2+MB2=AB2,
∴△ABM为直角三角形,且∠AMB=90°,
∴S弓形ACB=S扇形AMB- S△ABM=.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面给出四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD为平行四边形的是( )
A. 1∶2∶3∶4 B. 2∶3∶2∶3
C. 2∶2∶3∶3 D. 1∶2∶2∶3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3)。双曲线的图像经过BC的中点D,且与AB交于点E,连接DE。
(1)求k的值及点E的坐标;
(2)若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x 轴上,点C 在直线y=x-2上.
(1)求矩形各顶点坐标;
(2)若直线y=x-2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式;
(3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com