【题目】如图,直线l1的函数解析式为y=2x–2,直线l1与x轴交于点D.直线l2:y=kx+b与x轴交于点A,且经过点B(3,1),如图所示.直线l1、l2交于点C(m,2).
(1)求点D、点C的坐标;
(2)求直线l2的函数解析式;
(3)利用函数图象写出关于x、y的二元一次方程组的解.
【答案】(1)D(1,0),C(2,2);(2)y=–x+4;(3).
【解析】
(1)求函数值为0时一次函数y=2x-2所对应的自变量的值即可得到D点横坐标,把C(m,2)代入y=2x-2求出m得到C点坐标;
(2)把C、B坐标代入y=kx+b中,利用待定系数法求直线l2的解析式;
(3)利用方程组的解就是两个相应的一次函数图象的交点坐标求解.
(1)∵点D为直线l1:y=2x–2与x轴的交点,
∴当y=0时,0=2x–2,解得x=1,
∴D(1,0);
∵点C在直线l1:y=2x–2上,
∴2=2m–2,解得m=2,
∴点C的坐标为(2,2);
(2)∵点C(2,2)、B(3,1)在直线l2上,
∴,
解得,
∴直线l2的解析式为y=–x+4;
(3)由图可知二元一次方程组的解为.
科目:初中数学 来源: 题型:
【题目】甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(2,m)是第一象限内一点,连接OA,将OA绕点A逆时针旋转90°得到线段AB,若反比例函数y= (x>0)的图象恰好同时经过点A、B,则k的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接BC.
(1)求A、B、C三点的坐标及抛物线的对称轴;
(2)若已知x轴上一点N( ,0),则在抛物线的对称轴上是否存在一点Q,使得△CNQ是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一种阳台户外伸缩晾衣架,侧面示意图如图2所示,其支架AB,CD,EF,GH,BE,DG,FK的长度都为40cm(支架的宽度忽略不计),四边形BQCP、DMEQ、FNGM是互相全等的菱形,当晾衣架的A端拉伸到距离墙壁最远时,∠B=∠D=∠F=80°,这时A端到墙壁的距离约为cm.
(sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.
⑴求购进一件甲种礼品、一件乙种礼品各需多少元;
⑵元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了20%,一件乙种礼品价格比第一次购进时降低了5元.如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最少可购进多少件甲种礼品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一般情况下是不成立的,但有些数可以使得它成立,例如:.我们称使得成立的一对数为“相伴数对”,记为.
(1)若为“相伴数对”,试求的值;
(2)请写出一个“相伴数对”,其中,且,并说明理由;
(3)已知是“相伴数对”,试说明也是“相伴数对”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com