精英家教网 > 初中数学 > 题目详情

【题目】如图所示,OE是∠AOD的平分线,OC是∠BOD的平分线.

(1)若∠AOB=130°,则∠COE是多少度?

(2)在(1)的条件下,若∠COD=20°,则∠BOE是多少度?

【答案】(1) 65°(2) 85°

【解析】试题分析:(1)直接根据角平分线的定义进行解答即可;
(2)先根据∠COD=20°求出∠BOD的度数,再根据∠AOB=130°求出∠AOD的度数,根据角平分线的定义即可得出结论.

试题解析:1OC是AOD的平分线,OE是BOD的平分线,AOB=130°
∴∠COE=BOD+AOD=BOD+AOD=AOB=65°

2∵∠COD=20°
∴∠BOD=2×20°=40°
∵∠AOB=130°
∴∠AOD=AOB-BOD=130°-40°=90°
OE是BOD的平分线,
∴∠BOE=AOD+BOD=×90°+40°=85°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】嘉淇同学要证明命题两组对边分别相等的四边形是平行四边形是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.

已知:如图1,在四边形ABCD中,BC=AD,AB=

求证:四边形ABCD 四边形.

(1)在方框中填空,以补全已知和求证;

(2)按嘉淇同学的思路写出证明过程;

(3)用文字叙述所证命题的逆命题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.
(1)求抛物线的解析式;
(2)结合图象写出,0<x<4时,直接写出y的取值范围
(3)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,求出矩形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,则∠BOC的度数是(  )

A. 113° B. 134° C. 136° D. 144°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.

根据下面图象,回答下列问题:

(1)求线段AB所表示的函数关系式;

(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OC在∠BOD内.

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,则∠AOD的度数是   

②猜想∠BOC与∠AOD的数量关系,并说明理由;

2)如果∠AOC=BOD=x°AOD=y°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为(
A.
B.2
C.2
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:

居民(户)

1

2

3

4

月用电量(度/户)

30

42

50

51

那么关于这10户居民月用电量的说法错误的是(
A.中位数是50
B.众数是51
C.平均数是46.8
D.方差是42

查看答案和解析>>

同步练习册答案