精英家教网 > 初中数学 > 题目详情

【题目】如图,将两张长为5,宽为1的矩形纸条交叉,让两个矩形对角线交点重合,且使重叠部分成为一个菱形.当两张纸条垂直时,菱形周长的最小值是4,把一个矩形绕两个矩形重合的对角线交点旋转一定角度,在旋转过程中,得出所有重叠部分为菱形的四边形中,周长的最大值是(  )

A. 8B. 10C. 10.4D. 12

【答案】C

【解析】

作出图形,确定当两矩形纸条有一条对角线互相重合时,菱形的周长最大,设菱形的边长为x,表示出AB,然后利用勾股定理列式进行计算求出x,再根据菱形的四条边都相等解答.

如图,菱形的周长最大,

设菱形的边长AC=x,则AB=5-x

RtABC中,AC2=AB2+BC2

x2=5-x2+12

解得x=2.6

所以,菱形的最大周长=2.6×4=10.4

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知yx的函数,自变量x的取值范围是x0,下表是yx的几组对应值.

x

1

2

4

5

6

8

9

y

3.92

1.95

0.98

0.78

2.44

2.44

0.78

小风根据学习函数的经验,利用上述表格所反映出的yx之间的变化规律,对该函数的图象和性质进行了探究.

下面是小风的探究过程,请补充完整:

1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

2)根据画出的函数图象,写出:

x7对应的函数值y约为多少;

②写出该函数的一条性质.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).

根据上述信息,解答下列各题:

×

(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;

(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;

(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).

统计量

平均数(次)

中位数(次)

众数(次)

方差

该班级男生

根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线过原点且与x轴交于点A,顶点的纵坐标是

求抛物线的函数表达式及点A坐标;

根据图象回答:当x为何值时抛物线位于x轴上方?

直接写出所求抛物线先向左平移3个单位,再向上平移5个单位所得到抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C90°,∠B30°

1)在BC上作出点D,使它到AB两点的距离相等(用尺规作图法,保留作图痕迹,不要求写作法)

2)若BD6,求CD长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知顶点为P的抛物线C1的解析式为y=a(x-3)2(a≠0),且经过点(0,1).

(1)a的值及抛物线C1的解析式;

(2)如图,将抛物线C1向下平移h(h>0)个单位得到抛物线C2,过点K(0,m2)(m>0)作直线l平行于x,与两抛物线从左到右分别相交于A,B,C,D四点,A,C两点关于y轴对称.

①点G在抛物线C1,m为何值时,四边形APCG为平行四边形?

②若抛物线C1的对称轴与直线l交于点E,与抛物线C2交于点F.试探究:K点运动过程中,的值是否改变?若会,请说明理由;若不会,请求出这个值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PAPBABOP,已知PB是⊙O的切线.

(1)求证:∠PBA=C

(2)OPBC,且OP=9,⊙O的半径为3,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.

请根据以上信息,回答下列问题:

(l)杨老师采用的调查方式是   (填“普查”或“抽样调查”);

(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数   

(3)请估计全校共征集作品的什数.

(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x0)的图象交AB于点N,的图象交AB于点N, S矩形OABC=32,tanDOE=,,则BN的长为______________.

查看答案和解析>>

同步练习册答案