【题目】在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片沿过点的直线折叠,使得点落在上的点处,折痕为;再将分别沿折叠,此时点落在上的同一点处.请完成下列探究:
的大小为__________;
当四边形是平行四边形时的值为__________.
【答案】30
【解析】
(1)根据折叠得到∠D+∠C=180°,推出AD∥BC,,进而得到∠AQP=90°,以及∠A=180°-∠B=90°,再由折叠,得到∠DAQ=∠BAP=∠PAQ=30°即可;
(2)根据题意得到DC∥AP,从而证明∠APQ=∠PQR,得到QR=PR和QR=AR,结合(1)中结论,设QR=a,则AP=2a,由勾股定理表达出AB=AQ=即可解答.
解:(1)由题意可知,∠D+∠C=180°,
∴AD∥BC,
由折叠可知∠AQD=∠AQR,∠CQP=∠PQR,
∴∠AQR+∠PQR=,即∠AQP=90°,
∴∠B=90°,则∠A=180°-∠B=90°,
由折叠可知,∠DAQ=∠BAP=∠PAQ,
∴∠DAQ=∠BAP=∠PAQ=30°,
故答案为:30;
(2)若四边形APCD为平行四边形,则DC∥AP,
∴∠CQP=∠APQ,
由折叠可知:∠CQP=∠PQR,
∴∠APQ=∠PQR,
∴QR=PR,
同理可得:QR=AR,即R为AP的中点,
由(1)可知,∠AQP=90°,∠PAQ=30°,且AB=AQ,
设QR=a,则AP=2a,
∴QP=,
∴AB=AQ=,
∴,
故答案为:.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线()与双曲线交于,两点(点在第一象限),直线()与双曲线交于,两点.当这两条直线互相垂直,且四边形的周长为时,点的坐标为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(教材呈现)
下图是华师版九年级上册数学教材第79页的部分内容.
如图,矩形的对角线、相交于点,、、、分别为、、、的中点,求证:四边形是矩形.
请根据教材内容,结合图①,写出完整的解题过程.
(结论应用)
(1)在图①中,若,,则四边形的面积为__________;
(2)如图②,在菱形中,,是其内任意一点,连接与菱形各顶点,四边形的顶点、、、分别在、、、上,,,且,若与的面积和为,则菱形的周长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点,是第一象限角平分线上的两点,点的纵坐标为1,且,在轴上取一点,连接,,,,使得四边形的周长最小,这个最小周长的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(﹣6,0),点B(0,8),点C在线段AB上,点D在y轴上,将∠ABO沿直线CD翻折,使点B与点A重合.若点E在线段CD延长线上,且CE=5,点M在y轴上,点N在坐标平面内,如果以点C、E、M、N为顶点的四边形是菱形,那么点N有( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量某条河的对岸边C,D两点间的距离,在河的岸边与平行的直线上取两点A,B,测得,,量得长为70米.求C,D两点间的距离(参考数据:,,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB是直线y=x+1的一部分,其中点A在y轴上,点B横坐标为2,曲线BC是双曲线()的一部分,由点C开始不断重复“ABC”的过程,形成一组波浪线,点P(2019,m)与Q(2025,n)均在该波浪线上,G为x轴上一动点,则△PQG周长的最小值为( )
A.16B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com