【题目】如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=﹣的图象经过点C,与AB交与点D,则△COD的面积的值等于_____;
【答案】10.
【解析】分析:易证S菱形ABCO=2S△CDO,再根据tan∠AOC的值,可以假设OF=3x,推出OC=5x,可得OA=OC=5x,S菱形ABCO=AOCF=20x2,由C(﹣3x,4x),可得×3x×4x=6,推出x2=1,由此即可解决问题.
详解:作DE∥AO,CF⊥AO,设CF=4x,
∵四边形OABC为菱形,∴AB∥CO,AO∥BC.
∵DE∥AO,∴S△ADO=S△DEO,同理S△BCD=S△CDE.
∵S菱形ABCO=S△ADO+S△DEO+S△BCD+S△CDE,∴S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO.
∵tan∠AOC=,∴OF=3x,∴OC=5x,∴OA=OC=5x.
∵S菱形ABCO=AOCF=20x2.
∵C(﹣3x,4x),∴×3x×4x=6,∴x2=1,∴S菱形ABCO=20,∴△COD的面积=10.
故答案为:10.
科目:初中数学 来源: 题型:
【题目】已知,如图,△ABC中,AB=AC,∠A=36°.
(1)作AB边的垂直平分线,垂足为M,交AC于N,连结BN.(不写作法,保留作图痕迹)
(2)①直接写出∠ABN的度数为 ;
②若BC=12,直接写出BN的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蜗牛从某点开始沿一条东西方向的直线爬行,规定以出发点为原点,向东爬行的路程记为正数,向西爬行的路程记为负数,则蜗牛爬过的各段路程依次为+5,-3,+10,-8,-6,+12,-10.(单位:厘米)
(1)请判断蜗牛最后是否回到出发点?
(2)蜗牛离开出发点0最远时是多少厘米?
(3)在爬行过程中,若蜗牛每爬1厘米就奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.
尝试 (1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数x是多少?
应用 求从下到上前31个台阶上数的和.
发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩(分) | 频数(人数) | 频率 |
一 | 2 | ||
二 | 10 | 0.2 | |
三 | 12 | ||
四 | 0.4 | ||
五 | 6 |
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有__________名学生参加;
(2)直接写出表中:_______________________
(3)请补全右面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数 y =kx2 +(k +1)x +1(k 为实数),
(1)当 k=3 时,求此函数图象与 x 轴的交点坐标;
(2)判断此函数与 x 轴的交点个数,并说明理由;
(3)当此函数图象为抛物线,且顶点在 x 轴下方,顶点到 y 轴的距离为 2,求 k 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.(售价不低于进价).请根据小丽提供的信息,解答小华和小明提出的问题.
认真阅读上面三位同学的对话,请根据小丽提供的信息.
(1)解答小华的问题;
(2)解答小明的问题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校随机选取40名学生进行军运会知识考查,对考查成绩进行统计(成绩均为整数),并依据统计数据绘制了如下统计图表.解答下列问题:
组别 | 分数段/分 | 频数 | 频率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合计 | 40 | 1.00 |
(1) 表中a=______;b=______;c=____;
(2) 请补全频数分布直方图;
(3) 已知该学校共有学生1280人,若考查成绩80分以上(不含80分)为优秀,试估计该学校学生军运会知识考查成绩达到优秀的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com