分析 (1)利用S△OMB=$\frac{3}{2}$,结合反比例函数图象的性质得出k的值,进而得出答案;
(2)利用图象上点的坐标性质分别求出A,C点坐标;
(3)以两边为邻边,另一边为对角线画平行四边形是可行的,所以点P存在.
解答
解:(1)∵S△OMB=$\frac{3}{2}$=$\frac{1}{2}$×OM×BM=$\frac{1}{2}$|k|,由反比例函数图象在第二、四象限,
∴k=-3,
∴这两个函数的解析式分别为:y=-$\frac{3}{x}$,y=-x+2;
(2)在y=-x+2中,
设y=0,则x=2,
所以A(2,0),
将x=3代入y=-$\frac{3}{x}$得,y=-1,
所以C(3,-1);
(3)当AO是对角线时,由C点坐标(3,-1),可得:点P1(-1,1);
当OC是对角线时,AO=P2C=2,则点P2(1,-1);
当AC是对角线时,AO=CP3,则点P3(5,-1);
故存在P(-1,1)或(1,-1)或(5,-1),使以A、O、C、P为顶点的四边形为平行四边形.
点评 此题主要考查了反比例函数综合以及函数图象上点的坐标性质、平行四边形的性质与判定等知识,正确利用分类讨论得出是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | a=8,b=1.6 | B. | a=6,b=2.0 | C. | a=10,b=0.6 | D. | a=5,b=3.1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com