【题目】如图,点,在直线上.抛物线与线段围成封闭图形(包括边界),则内的整点(横、纵坐标都为整数)最多有( )
A.4个B.5个C.6个D.7个
【答案】C
【解析】
根据直线的解析式先判断出线段AB上的整数点个数,因为抛物线必过,且抛物线要与围成封闭图形,则当,图像过点时,中的整数点最多;当,图像过点时,中的整数点最多,分别求出抛物线的解析式,再在网格图上画出图像,即可求出答案.
解:将A、B两点的纵坐标代入可求得,,
把-5、-4、-3、-2、-1、0、1、2、3分别代入的x中,可得y的值分别为5、、4、、3、、2、、1,则线段上的整数点有,,,,.
必过,且抛物线要与围成封闭图形,则
当,图像过点时,,此时中的整数点最多;
当,图像过点时,,此时中的整数点最多;
分别画出图像,根据整数刻度画出网格,如下图所示,
当,内的整数点共有6个,
当,内的整数点共有5个,
故内的整数点最多有6个.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=(x>0)的图象与线段AB相交于点C,C是线段AB的中点,点C关于直线y=x的对称点C'的坐标为(m,6)(m≠6),若△OAB的面积为12,则k的值为( )
A.4B.6C.8D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知二次函数y=ax2+4ax+c(a<0)的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D,DH⊥x轴于H与AC交于点E.连接CD、BC、BE.若S△CBE∶S△ABE=2∶3,
(1)点A的坐标为 ,点B的坐标为 ;
(2)连结BD,是否存在数值a,使得∠CDB=∠BAC?若存在,请求出a的值;若不存在,请说明理由;
(3)若AC恰好平分∠DCB,求二次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点,与轴交于点,(点在点左侧).直线与抛物线的对称轴交于点.
(1)求抛物线的对称轴;
(2)直接写出点的坐标;
(3)点与点关于抛物线的对称轴对称,过点作轴的垂线与直线交于点,若,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,⊙M过坐标原点O且分别交x轴、y轴于点A,B,点C为第一象限内⊙M上一点.若点A(6,0),∠BCO=30°.
(1)求点B的坐标;
(2)若点D的坐标为(-2,0),试猜想直线DB与⊙M的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,扇形的半径为3,面积为,点是的中点,连接,.
(1)求证:四边形是菱形;
(2)如图2,,绕点旋转,与,分别交于点(点与点均不重合),与交于两点.
①求的值;
②如图2,连接,,若的度数是定值,则直接写出的度数;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与,轴分别交于点,,与反比例函数图象交于点,,过点作轴的垂线交该反比例函数图象于点.
求点的坐标.
若.
①求的值.
②试判断点与点是否关于原点成中心对称?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y是x的二次函数,该函数的图象经过点A(0,5)、B(1,2)、C(3,2).
(1)求该二次函数的表达式,画出它的大致图象并标注顶点及其坐标;
(2)结合图象,回答下列问题:
①当1≤x≤4时,y的取值范围是 ;
②当m≤x≤m+3时,求y的最大值(用含m的代数式表示);
③是否存在实数m、n(m≠n),使得当m≤x≤n时,m≤y≤n?若存在,请求出m、n;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com